File size: 13,434 Bytes
0469e08
 
 
 
 
ff98ab7
0469e08
 
 
 
 
 
aeda90f
0469e08
 
d31c2af
0469e08
 
 
 
2c8e1ad
 
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
 
 
32056ff
3b0c073
3bd6fba
22ed136
 
 
32056ff
22ed136
3b0c073
b75ba06
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
3bd6fba
0469e08
 
 
 
2bd9b5e
0469e08
 
 
1aac498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbd5b0
1aac498
 
3bd6fba
 
1aac498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0469e08
051f01e
5028d04
2e769a9
2bd9b5e
 
5028d04
051f01e
 
 
 
 
5028d04
051f01e
0469e08
5028d04
0469e08
 
3bd6fba
2bd9b5e
3bd6fba
5028d04
 
3bd6fba
5028d04
 
d07cadd
 
2e769a9
3b78d85
d07cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
efe3694
d07cadd
 
 
 
ea2b32e
 
 
a7ff9c4
 
 
 
 
 
 
ea2b32e
 
d07cadd
 
0469e08
3bd6fba
d07cadd
 
 
 
 
 
880fa16
d07cadd
 
20e7544
 
 
 
 
 
 
 
 
 
 
d07cadd
 
 
0469e08
 
 
6330958
e7568fa
 
fff26a5
 
c1da1e1
e7568fa
9c1207c
1aac498
 
f84ad09
1aac498
0469e08
 
 
 
 
 
 
2e769a9
0469e08
68a6103
818194d
2e769a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0469e08
 
 
386d47d
b521301
994dd24
 
 
 
 
1aac498
0469e08
51785c7
 
a7ff9c4
51785c7
 
d07cadd
51785c7
 
5028d04
0469e08
1aac498
d07cadd
 
 
 
 
1aac498
d07cadd
0b360e5
d07cadd
1aac498
d07cadd
0469e08
d07cadd
1aac498
 
0469e08
 
 
1aac498
0469e08
1aac498
d07cadd
 
 
 
 
2e769a9
d07cadd
 
 
 
 
 
2e769a9
d07cadd
 
0469e08
 
 
3bd6fba
0469e08
d07cadd
 
 
 
 
 
1aac498
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files

# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28

# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"

# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)

# List all files in the repository
files = list_repo_files(repo_id=model_repo)

# Download each file to the destination folder
for file in files:
    file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
    print(f"Downloaded {file} to {file_path}")

model = Qwen2VLForConditionalGeneration.from_pretrained(
    destination_folder,
    torch_dtype=torch.bfloat16,
    device_map="cpu",
)

# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)

# Helper functions
def draw_point(image_input, point=None, radius=5):
    """Draw a point on the image."""
    if isinstance(image_input, str):
        image = Image.open(image_input)
    else:
        image = Image.fromarray(np.uint8(image_input))

    if point:
        x, y = point[0] * image.width, point[1] * image.height
        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
    return image

def array_to_image_path(image_array, session_id):
    """Save the uploaded image and return its path."""
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    img = Image.fromarray(np.uint8(image_array))
    filename = f"{session_id}.png"
    img.save(filename)
    return os.path.abspath(filename)

def crop_image(image_path, click_xy, crop_factor=0.5):
    """Crop the image around the click point."""
    image = Image.open(image_path)
    width, height = image.size
    crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)

    center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
    left = max(center_x - crop_width // 2, 0)
    upper = max(center_y - crop_height // 2, 0)
    right = min(center_x + crop_width // 2, width)
    lower = min(center_y + crop_height // 2, height)

    cropped_image = image.crop((left, upper, right, lower))
    cropped_image_path = f"cropped_{os.path.basename(image_path)}"
    cropped_image.save(cropped_image_path)

    return cropped_image_path

@spaces.GPU
def run_showui(image, query, session_id, iterations=2):
    """Main function for iterative inference."""
    image_path = array_to_image_path(image, session_id)
    
    click_xy = None
    images_during_iterations = []  # List to store images at each step

    for _ in range(iterations):
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": _SYSTEM},
                    {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
                    {"type": "text", "text": query}
                ],
            }
        ]

        global model
        model = model.to("cuda")

        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt"
        )
        inputs = inputs.to("cuda")

        generated_ids = model.generate(**inputs, max_new_tokens=128)
        generated_ids_trimmed = [
            out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )[0]

        click_xy = ast.literal_eval(output_text)

        # Draw point on the current image
        result_image = draw_point(image_path, click_xy, radius=10)
        images_during_iterations.append(result_image)  # Store the current image

        # Crop the image for the next iteration
        image_path = crop_image(image_path, click_xy)

    return images_during_iterations, str(click_xy)

def save_and_upload_data(image, query, session_id, is_example_image, votes=None):
    """Save the data to a JSON file and upload to S3."""
    if is_example_image == "True":
        return

    votes = votes or {"upvotes": 0, "downvotes": 0}

    # Save image locally
    image_file_name = f"{session_id}.png"
    image.save(image_file_name)

    data = {
        "image_path": image_file_name,
        "query": query,
        "votes": votes,
        "timestamp": datetime.now().isoformat()
    }
    
    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)

    return data

def update_vote(vote_type, session_id, is_example_image):
    """Update the vote count and re-upload the JSON file."""
    if is_example_image == "True":
        return "Example image."

    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "r") as f:
        data = json.load(f)
    
    if vote_type == "upvote":
        data["votes"]["upvotes"] += 1
    elif vote_type == "downvote":
        data["votes"]["downvotes"] += 1
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)

    return f"Thank you for your {vote_type}!"

with open("./assets/showui.png", "rb") as image_file:
    base64_image = base64.b64encode(image_file.read()).decode("utf-8")

examples = [
    ["./examples/app_store.png", "Download Kindle.", True],
    ["./examples/ios_setting.png", "Turn off Do not disturb.", True],
    # ["./examples/apple_music.png", "Star to favorite.", True],
    # ["./examples/map.png", "Boston.", True],
    # ["./examples/wallet.png", "Scan a QR code.", True],
    # ["./examples/word.png", "More shapes.", True],
    # ["./examples/web_shopping.png", "Proceed to checkout.", True],
    # ["./examples/web_forum.png", "Post my comment.", True],
    # ["./examples/safari_google.png", "Click on search bar.", True],
]

def build_demo(embed_mode, concurrency_count=1):
    with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
        state_image_path = gr.State(value=None)
        state_session_id = gr.State(value=None)

        if not embed_mode:
            gr.HTML(
                f"""
                <div style="text-align: center; margin-bottom: 20px;">
                    <div style="display: flex; justify-content: center;">
                        <img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
                    </div>
                    <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
                    <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
                        <a href="https://huggingface.co./showlab/ShowUI-2B" target="_blank">
                            <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
                        </a>
                        <a href="https://arxiv.org/abs/2411.17465" target="_blank">
                            <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
                        </a>
                        <a href="https://github.com/showlab/ShowUI" target="_blank">
                            <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
                        </a>
                    </div>
                </div>
                """
            )

        with gr.Row():
            with gr.Column(scale=3):
                imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try ShowUI with screenshots!

                
                Windows:  [Win + Shift + S]
                macOS:  [Command + Shift + 3]
                
                Then upload/paste from clipboard 🤗
                """)
                
                # Add a slider for iteration count
                iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")

                textbox = gr.Textbox(
                    show_label=True,
                    placeholder="Enter a query (e.g., 'Click Nahant')",
                    label="Query",
                )
                submit_btn = gr.Button(value="Submit", variant="primary")

                # Examples component
                gr.Examples(
                    examples=[[e[0], e[1]] for e in examples],
                    inputs=[imagebox, textbox],
                    outputs=[textbox],  # Only update the query textbox
                    examples_per_page=3,
                )

                # Add a hidden dropdown to pass the `is_example` flag
                is_example_dropdown = gr.Dropdown(
                    choices=["True", "False"],
                    value="False",
                    visible=False,
                    label="Is Example Image",
                )

                def set_is_example(query):
                    # Find the example and return its `is_example` flag
                    for _, example_query, is_example in examples:
                        if query.strip() == example_query.strip():
                            return str(is_example)  # Return as string for Dropdown compatibility
                    return "False"

                textbox.change(
                    set_is_example,
                    inputs=[textbox],
                    outputs=[is_example_dropdown],
                )

            with gr.Column(scale=8):
                output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True)
                # output_gallery = gr.Gallery(label="Iterative Refinement")
                gr.HTML(
                    """
                    <p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
                    """
                )
                output_coords = gr.Textbox(label="Final Clickable Coordinates")

                gr.HTML(
                    """
                    <p><strong>🤔 Good or bad? Rate your experience to help us improve! ⬇️</strong></p>
                    """
                )
                with gr.Row(elem_id="action-buttons", equal_height=True):
                    upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary")
                    downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
                    clear_btn = gr.Button(value="🗑️ Clear", interactive=True)

            def on_submit(image, query, iterations, is_example_image):
                if image is None:
                    raise ValueError("No image provided. Please upload an image before submitting.")
                
                session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
                
                images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
                
                save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image)
                
                return images_during_iterations, click_coords, session_id

            submit_btn.click(
                on_submit,
                [imagebox, textbox, iteration_slider, is_example_dropdown],
                [output_gallery, output_coords, state_session_id],
            )

            clear_btn.click(
                lambda: (None, None, None, None),
                inputs=None,
                outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
                queue=False
            )

            upvote_btn.click(
                lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
                inputs=[state_session_id, is_example_dropdown],
                outputs=[],
                queue=False
            )

            downvote_btn.click(
                lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
                inputs=[state_session_id, is_example_dropdown],
                outputs=[],
                queue=False
            )

    return demo

if __name__ == "__main__":
    demo = build_demo(embed_mode=False)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        ssr_mode=False,
        debug=True,
    )