Spaces:
Running
Running
File size: 10,741 Bytes
c37d4b6 c7d7a53 c37d4b6 c7d7a53 c37d4b6 b7f1c62 c37d4b6 907340f c37d4b6 f3d166c c37d4b6 8ea6b53 c37d4b6 a15d1a4 c37d4b6 a15d1a4 c37d4b6 a15d1a4 c37d4b6 a15d1a4 2a9f449 a15d1a4 c37d4b6 a15d1a4 c37d4b6 286009e d356491 286009e f7b2fb1 c37d4b6 c7d7a53 c37d4b6 d4c9e6c 122832c c37d4b6 d4c9e6c c37d4b6 b9f403d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from pathlib import Path
from num2words import num2words
import numpy as np
import os
import random
import re
import torch
import json
from shapely.geometry.polygon import Polygon
from shapely.affinity import scale
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
os.system('pip3 install gradio==3.14.0')
import gradio as gr
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from transformers.models.gptj.modeling_gptj import apply_rotary_pos_emb as apply_rotary_pos_emb_pt
tokenizer = AutoTokenizer.from_pretrained("architext/gptj-162M")
finetuned = AutoModelForCausalLM.from_pretrained("architext/gptj-162M")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)
# Utility functions
def containsNumber(value):
for character in value:
if character.isdigit():
return True
return False
def creativity(intensity):
if(intensity == 'Low'):
top_p = 0.95
top_k = 10
elif(intensity == 'Medium'):
top_p = 0.9
top_k = 50
if(intensity == 'High'):
top_p = 0.85
top_k = 100
return top_p, top_k
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
"balcony": 7, "hallway": 8, "dining_room": 9, "laundry_room": 10, "corridor": 8}
architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255],
[6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
regex = re.compile(".*?\((.*?)\)")
def draw_polygons(polygons, colors, im_size=(512, 512), b_color="white", fpath=None):
image = Image.new("RGBA", im_size, color="white")
draw = ImageDraw.Draw(image)
for poly, color, in zip(polygons, colors):
#get initial polygon coordinates
xy = poly.exterior.xy
coords = np.dstack((xy[1], xy[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords), fill=(0, 0, 0))
#get inner polygon coordinates
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
if small_poly.geom_type == 'MultiPolygon':
mycoordslist = [list(x.exterior.coords) for x in small_poly]
for coord in mycoordslist:
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
draw.polygon(list(coords), fill=tuple(color))
elif poly.geom_type == 'Polygon':
#get inner polygon coordinates
xy2 = small_poly.exterior.xy
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords2), fill=tuple(color))
image = image.transpose(Image.FLIP_TOP_BOTTOM)
if(fpath):
image.save(fpath, quality=100, subsampling=0)
return draw, image
def prompt_to_layout(user_prompt, intensity, fpath=None):
if(containsNumber(user_prompt) == True):
spaced_prompt = user_prompt.split(' ')
new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
model_prompt = '[User prompt] Hallways are adjacent to bedrooms. {} [Layout]'.format(new_prompt)
top_p, top_k = creativity(intensity)
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
input_ids = tokenizer(model_prompt, return_tensors='pt').to(device)
output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k,
eos_token_id=50256, max_length=400)
output = tokenizer.batch_decode(output, skip_special_tokens=True)
layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
spaces = [txt.split(':')[0] for txt in layout]
coords = []
for txt in layout:
if ':' in txt:
split_txt = txt.split(':')
coords.append(split_txt[1].rstrip())
coordinates = [re.findall(regex, coord) for coord in coords]
# Initialize an empty list to store the numerical coordinates
num_coords = []
# Iterate over each coordinate in the coordinates list
for coord in coordinates:
temp = [] # Temporary list to store the cleaned numbers
# Split the coordinate into individual numbers
for xy in coord:
numbers = xy.split(',')
# Clean each number and convert it to an integer
for num in numbers:
clean_num = re.sub(r'^\D*|\D*$', '', num) # Remove non-digit characters
# Check if the cleaned number is a digit
if clean_num.isdigit():
# Convert the cleaned number to an integer and divide it by 14.2
# If division by zero occurs, skip this number
try:
temp.append(int(clean_num)/14.2)
except ZeroDivisionError:
continue # Skip this number and continue with the next one
# Append the temporary list to the num_coords list
num_coords.append(temp)
new_spaces = []
for i, v in enumerate(spaces):
totalcount = spaces.count(v)
count = spaces[:i].count(v)
new_spaces.append(v + str(count + 1) if totalcount > 1 else v)
out_dict = dict(zip(new_spaces, num_coords))
out_dict = json.dumps(out_dict)
polygons = []
for coord in coordinates:
polygons.append([point.split(',') for point in coord])
geom = []
for poly in polygons:
new_poly = [list(map(int, point)) for point in poly]
if len(new_poly) >= 4:
scaled_poly = scale(Polygon(new_poly), xfact=2, yfact=2, origin=(0,0))
geom.append(scaled_poly)
colors: List[int] = []
for space in spaces:
for key in housegan_labels.keys():
if key in space:
colors.append(architext_colors[housegan_labels[key]])
break
_, im = draw_polygons(geom, colors, fpath=fpath)
html = '<img class="labels" src="images/labels.png" />'
legend = Image.open("labels.png")
imgs_comb = np.vstack([im, legend])
imgs_comb = Image.fromarray(imgs_comb)
return imgs_comb, out_dict
# Gradio App
custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_wrapper .gradio_bg[is_embedded=false] {
min-height: 80%;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page {
display: flex;
width: 100vw;
min-height: 50vh;
flex-direction: column;
justify-content: center;
align-items: center;
margin: 0px;
max-width: 100vw;
background: #FFFFFF;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .content {
padding: 0px;
margin: 0px;
}
.gradio_interface {
width: 100vw;
max-width: 1500px;
}
.gradio_interface .panel:nth-child(2) .component:nth-child(3) {
display:none
}
.gradio_wrapper .gradio_bg[theme=default] .panel_buttons {
justify-content: flex-end;
}
.gradio_wrapper .gradio_bg[theme=default] .panel_button {
flex: 0 0 0;
min-width: 150px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit {
background: #11213A;
border-radius: 5px;
color: #FFFFFF;
text-transform: uppercase;
min-width: 150px;
height: 4em;
letter-spacing: 0.15em;
flex: 0 0 0;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit:hover {
background: #000000;
}
.input_text:focus {
border-color: #FA7880;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text input,
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text textarea {
font: 200 45px garamond-premier-pro-display, serif;
line-height: 110%;
color: #11213A;
border-radius: 5px;
padding: 15px;
border: none;
background: #F2F4F4;
}
.input_text textarea:focus-visible {
outline: none;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .radio_item.selected {
background-color: #11213A;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .selected .radio_circle {
border-color: #4365c4;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
width: 100%;
height: 40vw;
max-height: 630px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image .image_preview_holder {
background: transparent;
}
.panel:nth-child(1) {
margin-left: 50px;
margin-right: 50px;
margin-bottom: 80px;
max-width: 750px;
}
.panel {
background: transparent;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .component_set {
background: transparent;
box-shadow: none;
}
.panel:nth-child(2) .gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_header {
display: none;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .footer {
transform: scale(0.75);
filter: grayscale(1);
}
.labels {
height: 20px;
width: auto;
}
@media (max-width: 1000px){
.panel:nth-child(1) {
margin-left: 0px;
margin-right: 0px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
height: auto;
}
}
"""
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Low", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='An apartment with two bedrooms and one bathroom', lines="3",
label="DESCRIBE YOUR IDEAL APARTMENT")
generated = gr.outputs.Image(label='Generated Layout', type='numpy')
layout = gr.outputs.Textbox(label='Layout Coordinates')
examples = [
["two bedrooms and two bathrooms", "Low"],
["three bedrooms with a kitchen adjacent to the dining room", "Medium"]
]
def retry_prompt_to_layout(user_prompt, intensity, fpath=None):
max_attempts = 5
attempts = 0
while attempts < max_attempts:
try:
# Call the original function
result = prompt_to_layout(user_prompt, intensity, fpath)
return result
except Exception as e:
print(f"Attempt {attempts+1} failed with error: {e}")
attempts += 1
iface = gr.Interface(fn=retry_prompt_to_layout, inputs=[textbox, creative_slider],
outputs=[generated, layout],
css=custom_css,
theme="default",
allow_flagging='never',
allow_screenshot=False,
thumbnail="thumbnail_gradio.PNG",
examples=examples)
iface.launch(enable_queue=True) |