import argparse import textwrap #import argnet_lsaa as lsaa #import argnet_lsnt as lsnt #import argnet_ssaa as ssaa #import argnet_ssnt as ssnt import sys parser = argparse.ArgumentParser( prog='ARGNet', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent("""\ ARGNet: a deep nueral network for robust identification and annotation of antibiotic resistance genes. -------------------------------------------------------------------------------------------------------- The standlone program is at https:... The online service is at https:... The input can be long amino acid sequences(full length/contigs), long nucleotide sequences, short amino acid reads (30-50aa), short nucleotide reads (100-150nt) in fasta format. If your input is short reads you should assign 'argnet-s' model, or if your input is full-length/contigs you should assign 'argnet-l' to make the predict. USAGE: for full-length or contigs python argnet.py --input input_path_data --type aa/nt --model argnet-l --outname output_file_name for short reads python argnet.py --input input_path_data --type aa/nt --model argnet-s --outname output_file_name general options: --input/-i the test file as input --type/-t molecular type of your test data (aa for amino acid, nt for nucleotide) --model/-m the model you assign to make the prediction (argnet-l for long sequences, argnet-s for short reads) --outname/-on the output file name """ ), epilog='Hope you enjoy ARGNet journey, any problem please contact scpeiyao@gmail.com') parser.print_help() #parser.parse_args() parser.add_argument('-i', '--input', required=True, help='the test data as input') parser.add_argument('-t', '--type', required=True, choices=['aa', 'nt'], help='molecular type of your input file') parser.add_argument('-m', '--model', required=True, choices=['argnet-s', 'argnet-l'], help='the model to make the prediction') parser.add_argument('-on', '--outname', required=True, help='the name of results output') args = parser.parse_args() ## for AESS_aa -> classifier if args.type == 'aa' and args.model == 'argnet-s': import argnet_ssaa_chunk as ssaa ssaa.argnet_ssaa(args.input, args.outname) # for AESS_nt -> classifier if args.type == 'nt' and args.model == 'argnet-s': import argnet_ssnt_new_chunk as ssnt ssnt.argnet_ssnt(args.input, args.outname) # for AELS_aa -> classifier if args.type == 'aa' and args.model == 'argnet-l': import argnet_lsaa_speed_sgpu as lsaa lsaa.argnet_lsaa(args.input, args.outname) # for AELS_nt -> classifier if args.type == 'nt' and args.model == 'argnet-l': import argnet_lsnt as lsnt lsnt.argnet_lsnt(args.input, args.outname)