""" gradio """ import gradio as gr from helper import * import scripts.script as script def process_data(input_type, input_text, input_file): print(input_type) if input_type == "Text": if input_text: print(input_text) sequence = [] for line in input_text.splitlines(): if line.startswith(">"): sequence.append("") else: sequence[-1] += line.strip().upper() result = classify_sequence_type_length(sequence) script.run_argnet(input_text, "output.txt", result[0], result[1]) df, pie_chart = script.view_stat("output.txt") else: result = "No input provided." else: if input_file: sequence = [] input_text = open(input_file.name, "r").read() with open(input_file.name, "r") as f: for line in f: if line.startswith(">"): print(line.strip()) sequence.append("") else: print(line.strip().upper()) sequence[-1] += line.strip().upper() result = classify_sequence_type_length(sequence) script.run_argnet(input_text, "output.txt", result[0], result[1]) df, pie_chart = script.view_stat("output.txt") else: result = "No input provided." return df, pie_chart # Create the interface with tabs with gr.Blocks() as whole_block: tab_selected = gr.State("Text") gr.HTML( """
A deep neural network for robust identification and annotation of Antibiotic Resistance genes