{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "view-in-github" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "v9bpz99INAc1" }, "source": [ "# Install Packages and Setup Variables" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BeuFJKlj9jKz", "outputId": "4c3a9772-cb7d-4fc1-d0e4-64186861e3e5" }, "outputs": [], "source": [ "!pip install -q llama-index==0.10.5 openai==1.12.0 cohere==4.47 tiktoken==0.6.0" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "XuzgSNqcABpV" }, "outputs": [], "source": [ "import os\n", "\n", "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n", "os.environ[\"OPENAI_API_KEY\"] = \"\"" ] }, { "cell_type": "markdown", "metadata": { "id": "f5eV5EnvNCMM" }, "source": [ "# Load Dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "q-7mRQ-mNJlm" }, "source": [ "## Download" ] }, { "cell_type": "markdown", "metadata": { "id": "3PsdOdMUNmEi" }, "source": [ "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3ImRCP7pACaI", "outputId": "9a63bdea-54f7-4923-ccbb-cab03b312774" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 25361 100 25361 0 0 195k 0 --:--:-- --:--:-- --:--:-- 196k\n" ] } ], "source": [ "!curl -o ./mini-dataset.json https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-dataset.json" ] }, { "cell_type": "markdown", "metadata": { "id": "bZZLK_wyEc-L" }, "source": [ "## Read File" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "miUqycqAEfr7", "outputId": "10005d5f-15c0-4565-a58a-6cb7e466acb4" }, "outputs": [ { "data": { "text/plain": [ "22" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import json\n", "\n", "# Load the file as a JSON\n", "with open('./mini-dataset.json', 'r') as file:\n", " data = json.load(file)\n", "\n", "# The number of chunks in the dataset.\n", "len( data['chunks'] )" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "Mq5WKj0QEfpk" }, "outputs": [], "source": [ "# Flatten the JSON variable to a list of texts.\n", "texts = [item['text'] for item in data['chunks']]" ] }, { "cell_type": "markdown", "metadata": { "id": "f86yksB9K571" }, "source": [ "# Generate Embedding" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "iXrr5-tnEfm9" }, "outputs": [], "source": [ "from llama_index.core import Document\n", "\n", "# Convert the texts to Document objects so the LlamaIndex framework can process them.\n", "documents = [Document(text=t) for t in texts]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "qQit27lBEfkV" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/louis/Documents/GitHub/ai-tutor-rag-system/.conda/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "Parsing nodes: 100%|██████████| 22/22 [00:00<00:00, 1552.92it/s]\n", "Generating embeddings: 100%|██████████| 22/22 [00:00<00:00, 43.01it/s]\n" ] } ], "source": [ "from llama_index.core import VectorStoreIndex\n", "\n", "# Build index / generate embeddings using OpenAI.\n", "index = VectorStoreIndex.from_documents(documents, show_progress=True)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "xxB0A9ZYM-OD" }, "outputs": [], "source": [ "# Save the generated embeddings.\n", "# index.storage_context.persist(persist_dir=\"indexes\")" ] }, { "cell_type": "markdown", "metadata": { "id": "3DoUxd8KK--Q" }, "source": [ "# Query Dataset" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "bUaNH97dEfh9" }, "outputs": [], "source": [ "from llama_index.llms.openai import OpenAI\n", "# Define a query engine that is responsible for retrieving related pieces of text,\n", "# and using a LLM to formulate the final answer.\n", "llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\", max_tokens=512)\n", "query_engine = index.as_query_engine(llm=llm)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "tEgFx_aeFS5e", "outputId": "9133bd0c-f0c5-4124-9c4b-ab6c4c32b07a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Llama 2 model comes in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n" ] } ], "source": [ "response = query_engine.query(\n", " \"How many parameters LLaMA2 model has?\"\n", ")\n", "print(response)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "authorship_tag": "ABX9TyMcuy0u2XnwzWnARu0WjaRq", "include_colab_link": true, "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 0 }