Vamsikrishna Chemudupati
commited on
Commit
Β·
5fd9ae6
1
Parent(s):
f755dcf
Added comments to notebook
Browse files
notebooks/04-RAG_with_VectorStore.ipynb
CHANGED
@@ -333,7 +333,7 @@
|
|
333 |
"outputs": [],
|
334 |
"source": [
|
335 |
"from langchain.schema.document import Document\n",
|
336 |
-
"# Convert the chunks to Document objects so the
|
337 |
"documents = [Document(page_content=t) for t in chunks]"
|
338 |
]
|
339 |
},
|
@@ -356,9 +356,7 @@
|
|
356 |
"source": [
|
357 |
"from langchain_chroma import Chroma\n",
|
358 |
"from langchain_openai import OpenAIEmbeddings\n",
|
359 |
-
"#
|
360 |
-
"# chromadb.EphemeralClient saves data in-memory.\n",
|
361 |
-
"# Add the documents to the database and create Index / embeddings\n",
|
362 |
"\n",
|
363 |
"embeddings = OpenAIEmbeddings(model=\"text-embedding-ada-002\")\n",
|
364 |
"chroma_db = Chroma.from_documents(\n",
|
@@ -387,9 +385,7 @@
|
|
387 |
"outputs": [],
|
388 |
"source": [
|
389 |
"from langchain_openai import ChatOpenAI\n",
|
390 |
-
"#
|
391 |
-
"# and using a LLM to formulate the final answer.\n",
|
392 |
-
"\n",
|
393 |
"llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\", max_tokens=512)"
|
394 |
]
|
395 |
},
|
@@ -416,6 +412,8 @@
|
|
416 |
"from langchain.chains import RetrievalQA\n",
|
417 |
"query = \"How many parameters LLaMA2 model has?\"\n",
|
418 |
"retriever = chroma_db.as_retriever(search_kwargs={\"k\": 2})\n",
|
|
|
|
|
419 |
"chain = RetrievalQA.from_chain_type(llm=llm,\n",
|
420 |
" chain_type=\"stuff\",\n",
|
421 |
" retriever=retriever)\n",
|
|
|
333 |
"outputs": [],
|
334 |
"source": [
|
335 |
"from langchain.schema.document import Document\n",
|
336 |
+
"# Convert the chunks to Document objects so the LangChain framework can process them.\n",
|
337 |
"documents = [Document(page_content=t) for t in chunks]"
|
338 |
]
|
339 |
},
|
|
|
356 |
"source": [
|
357 |
"from langchain_chroma import Chroma\n",
|
358 |
"from langchain_openai import OpenAIEmbeddings\n",
|
359 |
+
"# Add the documents to chroma DB and create Index / embeddings\n",
|
|
|
|
|
360 |
"\n",
|
361 |
"embeddings = OpenAIEmbeddings(model=\"text-embedding-ada-002\")\n",
|
362 |
"chroma_db = Chroma.from_documents(\n",
|
|
|
385 |
"outputs": [],
|
386 |
"source": [
|
387 |
"from langchain_openai import ChatOpenAI\n",
|
388 |
+
"# Initializing the LLM model\n",
|
|
|
|
|
389 |
"llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\", max_tokens=512)"
|
390 |
]
|
391 |
},
|
|
|
412 |
"from langchain.chains import RetrievalQA\n",
|
413 |
"query = \"How many parameters LLaMA2 model has?\"\n",
|
414 |
"retriever = chroma_db.as_retriever(search_kwargs={\"k\": 2})\n",
|
415 |
+
"# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
|
416 |
+
"# and using a LLM to formulate the final answer.\n",
|
417 |
"chain = RetrievalQA.from_chain_type(llm=llm,\n",
|
418 |
" chain_type=\"stuff\",\n",
|
419 |
" retriever=retriever)\n",
|