AlaFalaki commited on
Commit
47c829b
·
1 Parent(s): 9f27183

Created using Colaboratory

Browse files
notebooks/06-RAG_Improve_Chunking.ipynb ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "authorship_tag": "ABX9TyOXQSTuXN8LHQooW46XZ9Xr",
8
+ "include_colab_link": true
9
+ },
10
+ "kernelspec": {
11
+ "name": "python3",
12
+ "display_name": "Python 3"
13
+ },
14
+ "language_info": {
15
+ "name": "python"
16
+ }
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {
22
+ "id": "view-in-github",
23
+ "colab_type": "text"
24
+ },
25
+ "source": [
26
+ "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/06-RAG_Improve_Chunking.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 1,
32
+ "metadata": {
33
+ "id": "QPJzr-I9XQ7l",
34
+ "colab": {
35
+ "base_uri": "https://localhost:8080/"
36
+ },
37
+ "outputId": "971cf4cb-ee33-477b-cc7d-d652b55b81f3"
38
+ },
39
+ "outputs": [
40
+ {
41
+ "output_type": "stream",
42
+ "name": "stdout",
43
+ "text": [
44
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.7/15.7 MB\u001b[0m \u001b[31m41.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
45
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
46
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.7/51.7 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
47
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m45.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
48
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m508.6/508.6 kB\u001b[0m \u001b[31m32.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
49
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.9/79.9 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
50
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
51
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.0/143.0 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
52
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.9/75.9 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
53
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m53.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
54
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m53.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
55
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.1/92.1 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
56
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.3/60.3 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
57
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m57.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
58
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m66.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
59
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.9/57.9 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
60
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.6/105.6 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
61
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
62
+ "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
63
+ " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
64
+ " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
65
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m698.9/698.9 kB\u001b[0m \u001b[31m54.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
66
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m82.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
67
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.6/72.6 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
68
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.9/68.9 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
69
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.9/76.9 kB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
70
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
71
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
72
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
73
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.8/50.8 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
74
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m37.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
75
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m87.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
76
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m76.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
77
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
78
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
79
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
80
+ "\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
81
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
82
+ "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
83
+ "\u001b[0m"
84
+ ]
85
+ }
86
+ ],
87
+ "source": [
88
+ "!pip install -q llama-index==0.9.21 openai==1.6.0 cohere==4.39 tiktoken==0.5.2 chromadb==0.4.21 kaleido==0.2.1 python-multipart==0.0.6"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "source": [
94
+ "import os\n",
95
+ "\n",
96
+ "os.environ[\"OPENAI_API_KEY\"] = \"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\""
97
+ ],
98
+ "metadata": {
99
+ "id": "riuXwpSPcvWC"
100
+ },
101
+ "execution_count": 2,
102
+ "outputs": []
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "source": [
107
+ "# Load the Dataset (CSV)"
108
+ ],
109
+ "metadata": {
110
+ "id": "I9JbAzFcjkpn"
111
+ }
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "source": [
116
+ "!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-dataset.csv"
117
+ ],
118
+ "metadata": {
119
+ "colab": {
120
+ "base_uri": "https://localhost:8080/"
121
+ },
122
+ "id": "wl_pbPvMlv1h",
123
+ "outputId": "70f7f4be-7b80-431b-8570-f388eb21878f"
124
+ },
125
+ "execution_count": 3,
126
+ "outputs": [
127
+ {
128
+ "output_type": "stream",
129
+ "name": "stdout",
130
+ "text": [
131
+ "--2023-12-26 19:25:41-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-dataset.csv\n",
132
+ "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.108.133, ...\n",
133
+ "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
134
+ "HTTP request sent, awaiting response... 200 OK\n",
135
+ "Length: 23689 (23K) [text/plain]\n",
136
+ "Saving to: ‘mini-dataset.csv’\n",
137
+ "\n",
138
+ "mini-dataset.csv 100%[===================>] 23.13K --.-KB/s in 0.007s \n",
139
+ "\n",
140
+ "2023-12-26 19:25:41 (3.10 MB/s) - ‘mini-dataset.csv’ saved [23689/23689]\n",
141
+ "\n"
142
+ ]
143
+ }
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "source": [
149
+ "from llama_index import download_loader\n",
150
+ "\n",
151
+ "SimpleCSVReader = download_loader(\"SimpleCSVReader\")\n",
152
+ "\n",
153
+ "loader = SimpleCSVReader(encoding=\"ISO-8859-1\")\n",
154
+ "documents = loader.load_data(file='./mini-dataset.csv')"
155
+ ],
156
+ "metadata": {
157
+ "id": "0Q9sxuW0g3Gd"
158
+ },
159
+ "execution_count": 4,
160
+ "outputs": []
161
+ },
162
+ {
163
+ "cell_type": "markdown",
164
+ "source": [
165
+ "# Chunking"
166
+ ],
167
+ "metadata": {
168
+ "id": "S17g2RYOjmf2"
169
+ }
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "source": [
174
+ "from llama_index import ServiceContext\n",
175
+ "from llama_index.embeddings.openai import OpenAIEmbedding\n",
176
+ "\n",
177
+ "# We use OpenAI's embedding model \"text-embedding-ada-002\"\n",
178
+ "embed_model = OpenAIEmbedding()\n",
179
+ "\n",
180
+ "# initialize service context (set chunk size)\n",
181
+ "service_context = ServiceContext.from_defaults(chunk_size=512, chunk_overlap=64, embed_model=embed_model)"
182
+ ],
183
+ "metadata": {
184
+ "id": "YizvmXPejkJE"
185
+ },
186
+ "execution_count": 5,
187
+ "outputs": []
188
+ },
189
+ {
190
+ "cell_type": "markdown",
191
+ "source": [
192
+ "### Test chunking"
193
+ ],
194
+ "metadata": {
195
+ "id": "ROMhNRvolTmI"
196
+ }
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "source": [
201
+ "node_parser = service_context.node_parser\n",
202
+ "\n",
203
+ "nodes = node_parser.get_nodes_from_documents(documents)\n",
204
+ "len( nodes )"
205
+ ],
206
+ "metadata": {
207
+ "colab": {
208
+ "base_uri": "https://localhost:8080/"
209
+ },
210
+ "id": "Oe_ePZh7lVmQ",
211
+ "outputId": "8f9a2250-2c8f-4f92-f6e6-037f3a18cdbb"
212
+ },
213
+ "execution_count": 6,
214
+ "outputs": [
215
+ {
216
+ "output_type": "execute_result",
217
+ "data": {
218
+ "text/plain": [
219
+ "13"
220
+ ]
221
+ },
222
+ "metadata": {},
223
+ "execution_count": 6
224
+ }
225
+ ]
226
+ },
227
+ {
228
+ "cell_type": "markdown",
229
+ "source": [
230
+ "# Save on Chroma"
231
+ ],
232
+ "metadata": {
233
+ "id": "OWaT6rL7ksp8"
234
+ }
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "source": [
239
+ "import chromadb\n",
240
+ "\n",
241
+ "# create client and a new collection\n",
242
+ "# chromadb.EphemeralClient to save in-memory.\n",
243
+ "chroma_client = chromadb.PersistentClient(path=\"./mini-dataset\")\n",
244
+ "chroma_collection = chroma_client.create_collection(\"mini-dataset\")"
245
+ ],
246
+ "metadata": {
247
+ "id": "mXi56KTXk2sp"
248
+ },
249
+ "execution_count": 7,
250
+ "outputs": []
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "source": [
255
+ "from llama_index.vector_stores import ChromaVectorStore\n",
256
+ "from llama_index.storage.storage_context import StorageContext\n",
257
+ "\n",
258
+ "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
259
+ "storage_context = StorageContext.from_defaults(vector_store=vector_store)"
260
+ ],
261
+ "metadata": {
262
+ "id": "jKXURvLtkuTS"
263
+ },
264
+ "execution_count": 8,
265
+ "outputs": []
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "source": [
270
+ "from llama_index import VectorStoreIndex\n",
271
+ "\n",
272
+ "index = VectorStoreIndex.from_documents(\n",
273
+ " documents, storage_context=storage_context, service_context=service_context\n",
274
+ ")"
275
+ ],
276
+ "metadata": {
277
+ "id": "WsD52wtrlESi"
278
+ },
279
+ "execution_count": 9,
280
+ "outputs": []
281
+ },
282
+ {
283
+ "cell_type": "markdown",
284
+ "source": [
285
+ "# Query Dataset"
286
+ ],
287
+ "metadata": {
288
+ "id": "8JPD8yAinVSq"
289
+ }
290
+ },
291
+ {
292
+ "cell_type": "code",
293
+ "source": [
294
+ "query_engine = index.as_query_engine()"
295
+ ],
296
+ "metadata": {
297
+ "id": "mzS13x1ZlZ5X"
298
+ },
299
+ "execution_count": 10,
300
+ "outputs": []
301
+ },
302
+ {
303
+ "cell_type": "code",
304
+ "source": [
305
+ "response = query_engine.query(\n",
306
+ " \"How many parameters LLaMA2 model has?\"\n",
307
+ ")\n"
308
+ ],
309
+ "metadata": {
310
+ "id": "sb8f_wwPnZcG"
311
+ },
312
+ "execution_count": 11,
313
+ "outputs": []
314
+ },
315
+ {
316
+ "cell_type": "code",
317
+ "source": [
318
+ "print(f\"Answer: \\n\\t{response}\\n\\n\\nSources:\")\n",
319
+ "\n",
320
+ "for idx, source in enumerate( response.source_nodes ):\n",
321
+ " print(\">\", idx+1)\n",
322
+ " print(source.node)\n",
323
+ " print(source.score)\n",
324
+ " print(\"_-\"*40)"
325
+ ],
326
+ "metadata": {
327
+ "colab": {
328
+ "base_uri": "https://localhost:8080/"
329
+ },
330
+ "id": "N3Ri8E5Dl4Ar",
331
+ "outputId": "6de37908-c3b0-41c9-e74e-8ad03b53ae6c"
332
+ },
333
+ "execution_count": 30,
334
+ "outputs": [
335
+ {
336
+ "output_type": "stream",
337
+ "name": "stdout",
338
+ "text": [
339
+ "Answer: \n",
340
+ "\tThe Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n",
341
+ "\n",
342
+ "\n",
343
+ "Sources:\n",
344
+ "> 1\n",
345
+ "Node ID: c8db296d-ad40-4f56-b67a-15d5d5807b36\n",
346
+ "Text: Meta has once again pushed the boundaries of AI with the release\n",
347
+ "of Llama 2, the highly anticipated successor to its groundbreaking\n",
348
+ "Llama 1 language model. Boasting a range of cutting-edge features,\n",
349
+ "Llama 2 has already disrupted the AI landscape and poses a real\n",
350
+ "challenge to ChatGPTÕs dominance. In this article, we will dive into\n",
351
+ "the exciting wo...\n",
352
+ "0.7188979822197016\n",
353
+ "_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-\n",
354
+ "> 2\n",
355
+ "Node ID: 2c1194e4-df31-474f-85a4-b19d16b4ece7\n",
356
+ "Text: Source: Meta Llama 2 paper Finding the right balance between\n",
357
+ "helpfulness and safety when optimizing a model poses significant\n",
358
+ "challenges. While a highly helpful model may be capable of answering\n",
359
+ "any question, including sensitive ones like ÒHow do I build a bomb?Ó,\n",
360
+ "it also raises concerns about potential misuse. Thus, striking the\n",
361
+ "perfect equilib...\n",
362
+ "0.7130334174007259\n",
363
+ "_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-\n"
364
+ ]
365
+ }
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "source": [
371
+ "print(response)"
372
+ ],
373
+ "metadata": {
374
+ "id": "hjYiWAocnalt"
375
+ },
376
+ "execution_count": null,
377
+ "outputs": []
378
+ }
379
+ ]
380
+ }