JAIGANESAN N commited on
Commit
471ad41
Β·
1 Parent(s): c2b7d18

upgrade model from GPT-4o-mini to Gemini-1.5-flash

Browse files
notebooks/04-RAG_with_VectorStore.ipynb CHANGED
@@ -3,10 +3,11 @@
3
  {
4
  "cell_type": "markdown",
5
  "metadata": {
6
- "id": "view-in-github"
 
7
  },
8
  "source": [
9
- "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/04-RAG_with_VectorStore.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
10
  ]
11
  },
12
  {
@@ -22,26 +23,30 @@
22
  "cell_type": "code",
23
  "execution_count": null,
24
  "metadata": {
 
25
  "id": "QPJzr-I9XQ7l"
26
  },
27
  "outputs": [],
28
  "source": [
29
- "!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma==0.1.9 llama-index-llms-gemini==0.1.11 google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma==0.1.0 langchain_openai==0.1.5 openai==1.37.0 chromadb==0.5.3"
30
  ]
31
  },
32
  {
33
  "cell_type": "code",
34
- "execution_count": 1,
35
  "metadata": {
36
  "id": "riuXwpSPcvWC"
37
  },
38
  "outputs": [],
39
  "source": [
40
  "import os\n",
41
- "\n",
42
  "# Set the following API Keys in the Python environment. Will be used later.\n",
43
  "os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
44
- "os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
 
 
 
 
45
  ]
46
  },
47
  {
@@ -73,22 +78,22 @@
73
  },
74
  {
75
  "cell_type": "code",
76
- "execution_count": 2,
77
  "metadata": {
78
  "colab": {
79
  "base_uri": "https://localhost:8080/"
80
  },
81
  "id": "-QTUkdfJjY4N",
82
- "outputId": "a88b2f8a-0c84-45a0-9b32-5088fe596612"
83
  },
84
  "outputs": [
85
  {
86
- "name": "stdout",
87
  "output_type": "stream",
 
88
  "text": [
89
  " % Total % Received % Xferd Average Speed Time Time Time Current\n",
90
  " Dload Upload Total Spent Left Speed\n",
91
- "100 169k 100 169k 0 0 1581k 0 --:--:-- --:--:-- --:--:-- 1584k\n"
92
  ]
93
  }
94
  ],
@@ -107,18 +112,18 @@
107
  },
108
  {
109
  "cell_type": "code",
110
- "execution_count": 3,
111
  "metadata": {
112
  "colab": {
113
  "base_uri": "https://localhost:8080/"
114
  },
115
  "id": "7CYwRT6R0o0I",
116
- "outputId": "351f170f-9a00-4b09-ae08-b45c3c48fce5"
117
  },
118
  "outputs": [
119
  {
120
- "name": "stdout",
121
  "output_type": "stream",
 
122
  "text": [
123
  "171044\n"
124
  ]
@@ -153,18 +158,18 @@
153
  },
154
  {
155
  "cell_type": "code",
156
- "execution_count": 4,
157
  "metadata": {
158
  "colab": {
159
  "base_uri": "https://localhost:8080/"
160
  },
161
  "id": "STACTMUR1z9N",
162
- "outputId": "15a61eac-8774-4cdb-db8d-e2eb5b07e517"
163
  },
164
  "outputs": [
165
  {
166
- "name": "stdout",
167
  "output_type": "stream",
 
168
  "text": [
169
  "335\n"
170
  ]
@@ -192,7 +197,7 @@
192
  },
193
  {
194
  "cell_type": "code",
195
- "execution_count": 6,
196
  "metadata": {
197
  "id": "CtdsIUQ81_hT"
198
  },
@@ -215,7 +220,7 @@
215
  },
216
  {
217
  "cell_type": "code",
218
- "execution_count": 7,
219
  "metadata": {
220
  "id": "mXi56KTXk2sp"
221
  },
@@ -231,7 +236,7 @@
231
  },
232
  {
233
  "cell_type": "code",
234
- "execution_count": 8,
235
  "metadata": {
236
  "id": "jKXURvLtkuTS"
237
  },
@@ -247,20 +252,67 @@
247
  },
248
  {
249
  "cell_type": "code",
250
- "execution_count": 9,
251
  "metadata": {
252
- "id": "WsD52wtrlESi"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  },
254
  "outputs": [
255
  {
256
- "name": "stderr",
257
- "output_type": "stream",
258
- "text": [
259
- "/Users/omar/Documents/ai_repos/ai-tutor-rag-system/env/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
260
- " from .autonotebook import tqdm as notebook_tqdm\n",
261
- "Parsing nodes: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 335/335 [00:00<00:00, 8031.85it/s]\n",
262
- "Generating embeddings: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 335/335 [00:03<00:00, 97.24it/s] \n"
263
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
  }
265
  ],
266
  "source": [
@@ -288,7 +340,7 @@
288
  },
289
  {
290
  "cell_type": "code",
291
- "execution_count": 10,
292
  "metadata": {
293
  "id": "mzS13x1ZlZ5X"
294
  },
@@ -306,20 +358,21 @@
306
  },
307
  {
308
  "cell_type": "code",
309
- "execution_count": 11,
310
  "metadata": {
 
311
  "colab": {
312
- "base_uri": "https://localhost:8080/"
 
313
  },
314
- "id": "AYsQ4uLN_Oxg",
315
- "outputId": "5066a06c-77ff-48a2-ee61-3abe2e9755e2"
316
  },
317
  "outputs": [
318
  {
319
- "name": "stdout",
320
  "output_type": "stream",
 
321
  "text": [
322
- "The LLaMA2 model has four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
323
  "\n"
324
  ]
325
  }
@@ -340,7 +393,7 @@
340
  },
341
  {
342
  "cell_type": "code",
343
- "execution_count": 12,
344
  "metadata": {
345
  "id": "SMPAniL2e4NP"
346
  },
@@ -363,7 +416,7 @@
363
  },
364
  {
365
  "cell_type": "code",
366
- "execution_count": 13,
367
  "metadata": {
368
  "id": "2xas7HkuhJ8A"
369
  },
@@ -374,7 +427,7 @@
374
  "\n",
375
  "# Add the documents to chroma DB and create Index / embeddings\n",
376
  "\n",
377
- "embeddings = OpenAIEmbeddings(model=\"text-embedding-ada-002\")\n",
378
  "chroma_db = Chroma.from_documents(\n",
379
  " documents=documents,\n",
380
  " embedding=embeddings,\n",
@@ -400,40 +453,65 @@
400
  },
401
  "outputs": [],
402
  "source": [
403
- "from langchain_openai import ChatOpenAI\n",
404
  "\n",
405
  "# Initializing the LLM model\n",
406
- "llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\", max_tokens=512)"
 
 
 
 
 
 
407
  ]
408
  },
409
  {
410
  "cell_type": "code",
411
  "execution_count": null,
412
  "metadata": {
 
413
  "colab": {
414
  "base_uri": "https://localhost:8080/"
415
  },
416
- "id": "AxBqPNtthPaa",
417
- "outputId": "93c9ad64-1cd1-4f52-c51e-6f3ec5d6542d"
418
  },
419
- "outputs": [],
 
 
 
 
 
 
 
 
 
420
  "source": [
421
  "from langchain.chains import RetrievalQA\n",
422
  "\n",
423
- "query = \"How many parameters LLaMA2 model has?\"\n",
424
- "retriever = chroma_db.as_retriever(search_kwargs={\"k\": 2})\n",
425
  "# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
426
  "# and using a LLM to formulate the final answer.\n",
427
  "chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
428
  "\n",
429
- "response = chain(query)\n",
430
  "print(response[\"result\"])"
431
  ]
 
 
 
 
 
 
 
 
 
432
  }
433
  ],
434
  "metadata": {
435
  "colab": {
436
- "provenance": []
 
437
  },
438
  "kernelspec": {
439
  "display_name": "Python 3",
@@ -450,8 +528,696 @@
450
  "nbconvert_exporter": "python",
451
  "pygments_lexer": "ipython3",
452
  "version": "3.12.4"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
  }
454
  },
455
  "nbformat": 4,
456
  "nbformat_minor": 0
457
- }
 
3
  {
4
  "cell_type": "markdown",
5
  "metadata": {
6
+ "id": "view-in-github",
7
+ "colab_type": "text"
8
  },
9
  "source": [
10
+ "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/04-RAG_with_VectorStore.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
11
  ]
12
  },
13
  {
 
23
  "cell_type": "code",
24
  "execution_count": null,
25
  "metadata": {
26
+ "collapsed": true,
27
  "id": "QPJzr-I9XQ7l"
28
  },
29
  "outputs": [],
30
  "source": [
31
+ "!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
32
  ]
33
  },
34
  {
35
  "cell_type": "code",
36
+ "execution_count": null,
37
  "metadata": {
38
  "id": "riuXwpSPcvWC"
39
  },
40
  "outputs": [],
41
  "source": [
42
  "import os\n",
 
43
  "# Set the following API Keys in the Python environment. Will be used later.\n",
44
  "os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
45
+ "os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
46
+ "\n",
47
+ "# from google.colab import userdata\n",
48
+ "# os.environ[\"OPENAI_API_KEY\"] = userdata.get('openai_api_key')\n",
49
+ "# os.environ[\"GOOGLE_API_KEY\"] = userdata.get('Google_api_key')"
50
  ]
51
  },
52
  {
 
78
  },
79
  {
80
  "cell_type": "code",
81
+ "execution_count": null,
82
  "metadata": {
83
  "colab": {
84
  "base_uri": "https://localhost:8080/"
85
  },
86
  "id": "-QTUkdfJjY4N",
87
+ "outputId": "34becd46-808a-42ee-e620-3e6b18f79e1d"
88
  },
89
  "outputs": [
90
  {
 
91
  "output_type": "stream",
92
+ "name": "stdout",
93
  "text": [
94
  " % Total % Received % Xferd Average Speed Time Time Time Current\n",
95
  " Dload Upload Total Spent Left Speed\n",
96
+ "100 169k 100 169k 0 0 609k 0 --:--:-- --:--:-- --:--:-- 612k\n"
97
  ]
98
  }
99
  ],
 
112
  },
113
  {
114
  "cell_type": "code",
115
+ "execution_count": null,
116
  "metadata": {
117
  "colab": {
118
  "base_uri": "https://localhost:8080/"
119
  },
120
  "id": "7CYwRT6R0o0I",
121
+ "outputId": "394603bd-6d33-40aa-8e06-6ef802879234"
122
  },
123
  "outputs": [
124
  {
 
125
  "output_type": "stream",
126
+ "name": "stdout",
127
  "text": [
128
  "171044\n"
129
  ]
 
158
  },
159
  {
160
  "cell_type": "code",
161
+ "execution_count": null,
162
  "metadata": {
163
  "colab": {
164
  "base_uri": "https://localhost:8080/"
165
  },
166
  "id": "STACTMUR1z9N",
167
+ "outputId": "d5360ce2-2c1e-459b-a3b3-e9899fe762b5"
168
  },
169
  "outputs": [
170
  {
 
171
  "output_type": "stream",
172
+ "name": "stdout",
173
  "text": [
174
  "335\n"
175
  ]
 
197
  },
198
  {
199
  "cell_type": "code",
200
+ "execution_count": null,
201
  "metadata": {
202
  "id": "CtdsIUQ81_hT"
203
  },
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": null,
224
  "metadata": {
225
  "id": "mXi56KTXk2sp"
226
  },
 
236
  },
237
  {
238
  "cell_type": "code",
239
+ "execution_count": null,
240
  "metadata": {
241
  "id": "jKXURvLtkuTS"
242
  },
 
252
  },
253
  {
254
  "cell_type": "code",
255
+ "execution_count": null,
256
  "metadata": {
257
+ "colab": {
258
+ "base_uri": "https://localhost:8080/",
259
+ "height": 81,
260
+ "referenced_widgets": [
261
+ "1a0185d42be8489c87874049e5d78424",
262
+ "e91d7972a14b4444808d649d5db15b7a",
263
+ "bd3eab2dfee94512b88d88fbd4cb3682",
264
+ "3ba2fa0f0c8449c3a22ff3593d2b6629",
265
+ "eb7ce1338f6a4c9a8fb9a92e8de78821",
266
+ "d9daeb567dcc4387a7ba406a559aa422",
267
+ "2a99f51fa5c24ce09f629d9d5322879d",
268
+ "edfd151ed26646d8a6d293a3cf1ecce6",
269
+ "032b979544624bd4a9f7eb91fa9dd2e8",
270
+ "28d35749a3fa4c6f80f626221f95cde1",
271
+ "3d78bf2951e04c21bd89c1d944412e5a",
272
+ "a0991085ef794c8cbf509370b67df911",
273
+ "780fa2ff5938403cb2c109c491368dce",
274
+ "f833fd603aa543f59a7e93fe980935cc",
275
+ "48e949bbaf7c4079bbe8fcf620066b8e",
276
+ "78fd41df7f604f0290dc034c9f01a18c",
277
+ "d2df0b3067574d46b951890b996a5751",
278
+ "b51937856bf64803a85ea7eb30f73cfe",
279
+ "74fe3cd416994417a2138d8a32beeed8",
280
+ "80626b461cce49e7bcb6e3e931c5d81c",
281
+ "23f0bdb422384eaf94a69d20502fdbe4",
282
+ "dfa74d96a1174e7ead6554b5c984f526"
283
+ ]
284
+ },
285
+ "id": "WsD52wtrlESi",
286
+ "outputId": "2d522a85-cdea-477b-a693-e26b404c8ed9"
287
  },
288
  "outputs": [
289
  {
290
+ "output_type": "display_data",
291
+ "data": {
292
+ "text/plain": [
293
+ "Parsing nodes: 0%| | 0/335 [00:00<?, ?it/s]"
294
+ ],
295
+ "application/vnd.jupyter.widget-view+json": {
296
+ "version_major": 2,
297
+ "version_minor": 0,
298
+ "model_id": "1a0185d42be8489c87874049e5d78424"
299
+ }
300
+ },
301
+ "metadata": {}
302
+ },
303
+ {
304
+ "output_type": "display_data",
305
+ "data": {
306
+ "text/plain": [
307
+ "Generating embeddings: 0%| | 0/335 [00:00<?, ?it/s]"
308
+ ],
309
+ "application/vnd.jupyter.widget-view+json": {
310
+ "version_major": 2,
311
+ "version_minor": 0,
312
+ "model_id": "a0991085ef794c8cbf509370b67df911"
313
+ }
314
+ },
315
+ "metadata": {}
316
  }
317
  ],
318
  "source": [
 
340
  },
341
  {
342
  "cell_type": "code",
343
+ "execution_count": null,
344
  "metadata": {
345
  "id": "mzS13x1ZlZ5X"
346
  },
 
358
  },
359
  {
360
  "cell_type": "code",
361
+ "execution_count": null,
362
  "metadata": {
363
+ "id": "AYsQ4uLN_Oxg",
364
  "colab": {
365
+ "base_uri": "https://localhost:8080/",
366
+ "height": 52
367
  },
368
+ "outputId": "f56876cc-f7bc-4e63-bb7b-9515e9b404cc"
 
369
  },
370
  "outputs": [
371
  {
 
372
  "output_type": "stream",
373
+ "name": "stdout",
374
  "text": [
375
+ "The LLaMA 2 model has four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
376
  "\n"
377
  ]
378
  }
 
393
  },
394
  {
395
  "cell_type": "code",
396
+ "execution_count": null,
397
  "metadata": {
398
  "id": "SMPAniL2e4NP"
399
  },
 
416
  },
417
  {
418
  "cell_type": "code",
419
+ "execution_count": null,
420
  "metadata": {
421
  "id": "2xas7HkuhJ8A"
422
  },
 
427
  "\n",
428
  "# Add the documents to chroma DB and create Index / embeddings\n",
429
  "\n",
430
+ "embeddings = OpenAIEmbeddings(model=\"text-embedding-3-small\")\n",
431
  "chroma_db = Chroma.from_documents(\n",
432
  " documents=documents,\n",
433
  " embedding=embeddings,\n",
 
453
  },
454
  "outputs": [],
455
  "source": [
456
+ "from langchain_google_genai import ChatGoogleGenerativeAI\n",
457
  "\n",
458
  "# Initializing the LLM model\n",
459
+ "#llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\", max_tokens=512)\n",
460
+ "\n",
461
+ "llm = ChatGoogleGenerativeAI(\n",
462
+ " model=\"gemini-1.5-flash\",\n",
463
+ " temperature=0,\n",
464
+ " max_tokens=512,\n",
465
+ ")"
466
  ]
467
  },
468
  {
469
  "cell_type": "code",
470
  "execution_count": null,
471
  "metadata": {
472
+ "id": "AxBqPNtthPaa",
473
  "colab": {
474
  "base_uri": "https://localhost:8080/"
475
  },
476
+ "outputId": "607b082a-66c2-49a2-ca59-b3cb85bf6067"
 
477
  },
478
+ "outputs": [
479
+ {
480
+ "output_type": "stream",
481
+ "name": "stdout",
482
+ "text": [
483
+ "The LLaMA 2 model comes in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
484
+ "\n"
485
+ ]
486
+ }
487
+ ],
488
  "source": [
489
  "from langchain.chains import RetrievalQA\n",
490
  "\n",
491
+ "query = \"How many parameters LLaMA 2 model has?\"\n",
492
+ "retriever = chroma_db.as_retriever(search_kwargs={\"k\": 4})\n",
493
  "# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
494
  "# and using a LLM to formulate the final answer.\n",
495
  "chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
496
  "\n",
497
+ "response = chain.invoke(query)\n",
498
  "print(response[\"result\"])"
499
  ]
500
+ },
501
+ {
502
+ "cell_type": "code",
503
+ "execution_count": null,
504
+ "metadata": {
505
+ "id": "AKr16L_kwyYX"
506
+ },
507
+ "outputs": [],
508
+ "source": []
509
  }
510
  ],
511
  "metadata": {
512
  "colab": {
513
+ "provenance": [],
514
+ "include_colab_link": true
515
  },
516
  "kernelspec": {
517
  "display_name": "Python 3",
 
528
  "nbconvert_exporter": "python",
529
  "pygments_lexer": "ipython3",
530
  "version": "3.12.4"
531
+ },
532
+ "widgets": {
533
+ "application/vnd.jupyter.widget-state+json": {
534
+ "1a0185d42be8489c87874049e5d78424": {
535
+ "model_module": "@jupyter-widgets/controls",
536
+ "model_name": "HBoxModel",
537
+ "model_module_version": "1.5.0",
538
+ "state": {
539
+ "_dom_classes": [],
540
+ "_model_module": "@jupyter-widgets/controls",
541
+ "_model_module_version": "1.5.0",
542
+ "_model_name": "HBoxModel",
543
+ "_view_count": null,
544
+ "_view_module": "@jupyter-widgets/controls",
545
+ "_view_module_version": "1.5.0",
546
+ "_view_name": "HBoxView",
547
+ "box_style": "",
548
+ "children": [
549
+ "IPY_MODEL_e91d7972a14b4444808d649d5db15b7a",
550
+ "IPY_MODEL_bd3eab2dfee94512b88d88fbd4cb3682",
551
+ "IPY_MODEL_3ba2fa0f0c8449c3a22ff3593d2b6629"
552
+ ],
553
+ "layout": "IPY_MODEL_eb7ce1338f6a4c9a8fb9a92e8de78821"
554
+ }
555
+ },
556
+ "e91d7972a14b4444808d649d5db15b7a": {
557
+ "model_module": "@jupyter-widgets/controls",
558
+ "model_name": "HTMLModel",
559
+ "model_module_version": "1.5.0",
560
+ "state": {
561
+ "_dom_classes": [],
562
+ "_model_module": "@jupyter-widgets/controls",
563
+ "_model_module_version": "1.5.0",
564
+ "_model_name": "HTMLModel",
565
+ "_view_count": null,
566
+ "_view_module": "@jupyter-widgets/controls",
567
+ "_view_module_version": "1.5.0",
568
+ "_view_name": "HTMLView",
569
+ "description": "",
570
+ "description_tooltip": null,
571
+ "layout": "IPY_MODEL_d9daeb567dcc4387a7ba406a559aa422",
572
+ "placeholder": "​",
573
+ "style": "IPY_MODEL_2a99f51fa5c24ce09f629d9d5322879d",
574
+ "value": "Parsing nodes: 100%"
575
+ }
576
+ },
577
+ "bd3eab2dfee94512b88d88fbd4cb3682": {
578
+ "model_module": "@jupyter-widgets/controls",
579
+ "model_name": "FloatProgressModel",
580
+ "model_module_version": "1.5.0",
581
+ "state": {
582
+ "_dom_classes": [],
583
+ "_model_module": "@jupyter-widgets/controls",
584
+ "_model_module_version": "1.5.0",
585
+ "_model_name": "FloatProgressModel",
586
+ "_view_count": null,
587
+ "_view_module": "@jupyter-widgets/controls",
588
+ "_view_module_version": "1.5.0",
589
+ "_view_name": "ProgressView",
590
+ "bar_style": "success",
591
+ "description": "",
592
+ "description_tooltip": null,
593
+ "layout": "IPY_MODEL_edfd151ed26646d8a6d293a3cf1ecce6",
594
+ "max": 335,
595
+ "min": 0,
596
+ "orientation": "horizontal",
597
+ "style": "IPY_MODEL_032b979544624bd4a9f7eb91fa9dd2e8",
598
+ "value": 335
599
+ }
600
+ },
601
+ "3ba2fa0f0c8449c3a22ff3593d2b6629": {
602
+ "model_module": "@jupyter-widgets/controls",
603
+ "model_name": "HTMLModel",
604
+ "model_module_version": "1.5.0",
605
+ "state": {
606
+ "_dom_classes": [],
607
+ "_model_module": "@jupyter-widgets/controls",
608
+ "_model_module_version": "1.5.0",
609
+ "_model_name": "HTMLModel",
610
+ "_view_count": null,
611
+ "_view_module": "@jupyter-widgets/controls",
612
+ "_view_module_version": "1.5.0",
613
+ "_view_name": "HTMLView",
614
+ "description": "",
615
+ "description_tooltip": null,
616
+ "layout": "IPY_MODEL_28d35749a3fa4c6f80f626221f95cde1",
617
+ "placeholder": "​",
618
+ "style": "IPY_MODEL_3d78bf2951e04c21bd89c1d944412e5a",
619
+ "value": " 335/335 [00:00&lt;00:00, 3304.59it/s]"
620
+ }
621
+ },
622
+ "eb7ce1338f6a4c9a8fb9a92e8de78821": {
623
+ "model_module": "@jupyter-widgets/base",
624
+ "model_name": "LayoutModel",
625
+ "model_module_version": "1.2.0",
626
+ "state": {
627
+ "_model_module": "@jupyter-widgets/base",
628
+ "_model_module_version": "1.2.0",
629
+ "_model_name": "LayoutModel",
630
+ "_view_count": null,
631
+ "_view_module": "@jupyter-widgets/base",
632
+ "_view_module_version": "1.2.0",
633
+ "_view_name": "LayoutView",
634
+ "align_content": null,
635
+ "align_items": null,
636
+ "align_self": null,
637
+ "border": null,
638
+ "bottom": null,
639
+ "display": null,
640
+ "flex": null,
641
+ "flex_flow": null,
642
+ "grid_area": null,
643
+ "grid_auto_columns": null,
644
+ "grid_auto_flow": null,
645
+ "grid_auto_rows": null,
646
+ "grid_column": null,
647
+ "grid_gap": null,
648
+ "grid_row": null,
649
+ "grid_template_areas": null,
650
+ "grid_template_columns": null,
651
+ "grid_template_rows": null,
652
+ "height": null,
653
+ "justify_content": null,
654
+ "justify_items": null,
655
+ "left": null,
656
+ "margin": null,
657
+ "max_height": null,
658
+ "max_width": null,
659
+ "min_height": null,
660
+ "min_width": null,
661
+ "object_fit": null,
662
+ "object_position": null,
663
+ "order": null,
664
+ "overflow": null,
665
+ "overflow_x": null,
666
+ "overflow_y": null,
667
+ "padding": null,
668
+ "right": null,
669
+ "top": null,
670
+ "visibility": null,
671
+ "width": null
672
+ }
673
+ },
674
+ "d9daeb567dcc4387a7ba406a559aa422": {
675
+ "model_module": "@jupyter-widgets/base",
676
+ "model_name": "LayoutModel",
677
+ "model_module_version": "1.2.0",
678
+ "state": {
679
+ "_model_module": "@jupyter-widgets/base",
680
+ "_model_module_version": "1.2.0",
681
+ "_model_name": "LayoutModel",
682
+ "_view_count": null,
683
+ "_view_module": "@jupyter-widgets/base",
684
+ "_view_module_version": "1.2.0",
685
+ "_view_name": "LayoutView",
686
+ "align_content": null,
687
+ "align_items": null,
688
+ "align_self": null,
689
+ "border": null,
690
+ "bottom": null,
691
+ "display": null,
692
+ "flex": null,
693
+ "flex_flow": null,
694
+ "grid_area": null,
695
+ "grid_auto_columns": null,
696
+ "grid_auto_flow": null,
697
+ "grid_auto_rows": null,
698
+ "grid_column": null,
699
+ "grid_gap": null,
700
+ "grid_row": null,
701
+ "grid_template_areas": null,
702
+ "grid_template_columns": null,
703
+ "grid_template_rows": null,
704
+ "height": null,
705
+ "justify_content": null,
706
+ "justify_items": null,
707
+ "left": null,
708
+ "margin": null,
709
+ "max_height": null,
710
+ "max_width": null,
711
+ "min_height": null,
712
+ "min_width": null,
713
+ "object_fit": null,
714
+ "object_position": null,
715
+ "order": null,
716
+ "overflow": null,
717
+ "overflow_x": null,
718
+ "overflow_y": null,
719
+ "padding": null,
720
+ "right": null,
721
+ "top": null,
722
+ "visibility": null,
723
+ "width": null
724
+ }
725
+ },
726
+ "2a99f51fa5c24ce09f629d9d5322879d": {
727
+ "model_module": "@jupyter-widgets/controls",
728
+ "model_name": "DescriptionStyleModel",
729
+ "model_module_version": "1.5.0",
730
+ "state": {
731
+ "_model_module": "@jupyter-widgets/controls",
732
+ "_model_module_version": "1.5.0",
733
+ "_model_name": "DescriptionStyleModel",
734
+ "_view_count": null,
735
+ "_view_module": "@jupyter-widgets/base",
736
+ "_view_module_version": "1.2.0",
737
+ "_view_name": "StyleView",
738
+ "description_width": ""
739
+ }
740
+ },
741
+ "edfd151ed26646d8a6d293a3cf1ecce6": {
742
+ "model_module": "@jupyter-widgets/base",
743
+ "model_name": "LayoutModel",
744
+ "model_module_version": "1.2.0",
745
+ "state": {
746
+ "_model_module": "@jupyter-widgets/base",
747
+ "_model_module_version": "1.2.0",
748
+ "_model_name": "LayoutModel",
749
+ "_view_count": null,
750
+ "_view_module": "@jupyter-widgets/base",
751
+ "_view_module_version": "1.2.0",
752
+ "_view_name": "LayoutView",
753
+ "align_content": null,
754
+ "align_items": null,
755
+ "align_self": null,
756
+ "border": null,
757
+ "bottom": null,
758
+ "display": null,
759
+ "flex": null,
760
+ "flex_flow": null,
761
+ "grid_area": null,
762
+ "grid_auto_columns": null,
763
+ "grid_auto_flow": null,
764
+ "grid_auto_rows": null,
765
+ "grid_column": null,
766
+ "grid_gap": null,
767
+ "grid_row": null,
768
+ "grid_template_areas": null,
769
+ "grid_template_columns": null,
770
+ "grid_template_rows": null,
771
+ "height": null,
772
+ "justify_content": null,
773
+ "justify_items": null,
774
+ "left": null,
775
+ "margin": null,
776
+ "max_height": null,
777
+ "max_width": null,
778
+ "min_height": null,
779
+ "min_width": null,
780
+ "object_fit": null,
781
+ "object_position": null,
782
+ "order": null,
783
+ "overflow": null,
784
+ "overflow_x": null,
785
+ "overflow_y": null,
786
+ "padding": null,
787
+ "right": null,
788
+ "top": null,
789
+ "visibility": null,
790
+ "width": null
791
+ }
792
+ },
793
+ "032b979544624bd4a9f7eb91fa9dd2e8": {
794
+ "model_module": "@jupyter-widgets/controls",
795
+ "model_name": "ProgressStyleModel",
796
+ "model_module_version": "1.5.0",
797
+ "state": {
798
+ "_model_module": "@jupyter-widgets/controls",
799
+ "_model_module_version": "1.5.0",
800
+ "_model_name": "ProgressStyleModel",
801
+ "_view_count": null,
802
+ "_view_module": "@jupyter-widgets/base",
803
+ "_view_module_version": "1.2.0",
804
+ "_view_name": "StyleView",
805
+ "bar_color": null,
806
+ "description_width": ""
807
+ }
808
+ },
809
+ "28d35749a3fa4c6f80f626221f95cde1": {
810
+ "model_module": "@jupyter-widgets/base",
811
+ "model_name": "LayoutModel",
812
+ "model_module_version": "1.2.0",
813
+ "state": {
814
+ "_model_module": "@jupyter-widgets/base",
815
+ "_model_module_version": "1.2.0",
816
+ "_model_name": "LayoutModel",
817
+ "_view_count": null,
818
+ "_view_module": "@jupyter-widgets/base",
819
+ "_view_module_version": "1.2.0",
820
+ "_view_name": "LayoutView",
821
+ "align_content": null,
822
+ "align_items": null,
823
+ "align_self": null,
824
+ "border": null,
825
+ "bottom": null,
826
+ "display": null,
827
+ "flex": null,
828
+ "flex_flow": null,
829
+ "grid_area": null,
830
+ "grid_auto_columns": null,
831
+ "grid_auto_flow": null,
832
+ "grid_auto_rows": null,
833
+ "grid_column": null,
834
+ "grid_gap": null,
835
+ "grid_row": null,
836
+ "grid_template_areas": null,
837
+ "grid_template_columns": null,
838
+ "grid_template_rows": null,
839
+ "height": null,
840
+ "justify_content": null,
841
+ "justify_items": null,
842
+ "left": null,
843
+ "margin": null,
844
+ "max_height": null,
845
+ "max_width": null,
846
+ "min_height": null,
847
+ "min_width": null,
848
+ "object_fit": null,
849
+ "object_position": null,
850
+ "order": null,
851
+ "overflow": null,
852
+ "overflow_x": null,
853
+ "overflow_y": null,
854
+ "padding": null,
855
+ "right": null,
856
+ "top": null,
857
+ "visibility": null,
858
+ "width": null
859
+ }
860
+ },
861
+ "3d78bf2951e04c21bd89c1d944412e5a": {
862
+ "model_module": "@jupyter-widgets/controls",
863
+ "model_name": "DescriptionStyleModel",
864
+ "model_module_version": "1.5.0",
865
+ "state": {
866
+ "_model_module": "@jupyter-widgets/controls",
867
+ "_model_module_version": "1.5.0",
868
+ "_model_name": "DescriptionStyleModel",
869
+ "_view_count": null,
870
+ "_view_module": "@jupyter-widgets/base",
871
+ "_view_module_version": "1.2.0",
872
+ "_view_name": "StyleView",
873
+ "description_width": ""
874
+ }
875
+ },
876
+ "a0991085ef794c8cbf509370b67df911": {
877
+ "model_module": "@jupyter-widgets/controls",
878
+ "model_name": "HBoxModel",
879
+ "model_module_version": "1.5.0",
880
+ "state": {
881
+ "_dom_classes": [],
882
+ "_model_module": "@jupyter-widgets/controls",
883
+ "_model_module_version": "1.5.0",
884
+ "_model_name": "HBoxModel",
885
+ "_view_count": null,
886
+ "_view_module": "@jupyter-widgets/controls",
887
+ "_view_module_version": "1.5.0",
888
+ "_view_name": "HBoxView",
889
+ "box_style": "",
890
+ "children": [
891
+ "IPY_MODEL_780fa2ff5938403cb2c109c491368dce",
892
+ "IPY_MODEL_f833fd603aa543f59a7e93fe980935cc",
893
+ "IPY_MODEL_48e949bbaf7c4079bbe8fcf620066b8e"
894
+ ],
895
+ "layout": "IPY_MODEL_78fd41df7f604f0290dc034c9f01a18c"
896
+ }
897
+ },
898
+ "780fa2ff5938403cb2c109c491368dce": {
899
+ "model_module": "@jupyter-widgets/controls",
900
+ "model_name": "HTMLModel",
901
+ "model_module_version": "1.5.0",
902
+ "state": {
903
+ "_dom_classes": [],
904
+ "_model_module": "@jupyter-widgets/controls",
905
+ "_model_module_version": "1.5.0",
906
+ "_model_name": "HTMLModel",
907
+ "_view_count": null,
908
+ "_view_module": "@jupyter-widgets/controls",
909
+ "_view_module_version": "1.5.0",
910
+ "_view_name": "HTMLView",
911
+ "description": "",
912
+ "description_tooltip": null,
913
+ "layout": "IPY_MODEL_d2df0b3067574d46b951890b996a5751",
914
+ "placeholder": "​",
915
+ "style": "IPY_MODEL_b51937856bf64803a85ea7eb30f73cfe",
916
+ "value": "Generating embeddings: 100%"
917
+ }
918
+ },
919
+ "f833fd603aa543f59a7e93fe980935cc": {
920
+ "model_module": "@jupyter-widgets/controls",
921
+ "model_name": "FloatProgressModel",
922
+ "model_module_version": "1.5.0",
923
+ "state": {
924
+ "_dom_classes": [],
925
+ "_model_module": "@jupyter-widgets/controls",
926
+ "_model_module_version": "1.5.0",
927
+ "_model_name": "FloatProgressModel",
928
+ "_view_count": null,
929
+ "_view_module": "@jupyter-widgets/controls",
930
+ "_view_module_version": "1.5.0",
931
+ "_view_name": "ProgressView",
932
+ "bar_style": "success",
933
+ "description": "",
934
+ "description_tooltip": null,
935
+ "layout": "IPY_MODEL_74fe3cd416994417a2138d8a32beeed8",
936
+ "max": 335,
937
+ "min": 0,
938
+ "orientation": "horizontal",
939
+ "style": "IPY_MODEL_80626b461cce49e7bcb6e3e931c5d81c",
940
+ "value": 335
941
+ }
942
+ },
943
+ "48e949bbaf7c4079bbe8fcf620066b8e": {
944
+ "model_module": "@jupyter-widgets/controls",
945
+ "model_name": "HTMLModel",
946
+ "model_module_version": "1.5.0",
947
+ "state": {
948
+ "_dom_classes": [],
949
+ "_model_module": "@jupyter-widgets/controls",
950
+ "_model_module_version": "1.5.0",
951
+ "_model_name": "HTMLModel",
952
+ "_view_count": null,
953
+ "_view_module": "@jupyter-widgets/controls",
954
+ "_view_module_version": "1.5.0",
955
+ "_view_name": "HTMLView",
956
+ "description": "",
957
+ "description_tooltip": null,
958
+ "layout": "IPY_MODEL_23f0bdb422384eaf94a69d20502fdbe4",
959
+ "placeholder": "​",
960
+ "style": "IPY_MODEL_dfa74d96a1174e7ead6554b5c984f526",
961
+ "value": " 335/335 [00:03&lt;00:00, 89.38it/s]"
962
+ }
963
+ },
964
+ "78fd41df7f604f0290dc034c9f01a18c": {
965
+ "model_module": "@jupyter-widgets/base",
966
+ "model_name": "LayoutModel",
967
+ "model_module_version": "1.2.0",
968
+ "state": {
969
+ "_model_module": "@jupyter-widgets/base",
970
+ "_model_module_version": "1.2.0",
971
+ "_model_name": "LayoutModel",
972
+ "_view_count": null,
973
+ "_view_module": "@jupyter-widgets/base",
974
+ "_view_module_version": "1.2.0",
975
+ "_view_name": "LayoutView",
976
+ "align_content": null,
977
+ "align_items": null,
978
+ "align_self": null,
979
+ "border": null,
980
+ "bottom": null,
981
+ "display": null,
982
+ "flex": null,
983
+ "flex_flow": null,
984
+ "grid_area": null,
985
+ "grid_auto_columns": null,
986
+ "grid_auto_flow": null,
987
+ "grid_auto_rows": null,
988
+ "grid_column": null,
989
+ "grid_gap": null,
990
+ "grid_row": null,
991
+ "grid_template_areas": null,
992
+ "grid_template_columns": null,
993
+ "grid_template_rows": null,
994
+ "height": null,
995
+ "justify_content": null,
996
+ "justify_items": null,
997
+ "left": null,
998
+ "margin": null,
999
+ "max_height": null,
1000
+ "max_width": null,
1001
+ "min_height": null,
1002
+ "min_width": null,
1003
+ "object_fit": null,
1004
+ "object_position": null,
1005
+ "order": null,
1006
+ "overflow": null,
1007
+ "overflow_x": null,
1008
+ "overflow_y": null,
1009
+ "padding": null,
1010
+ "right": null,
1011
+ "top": null,
1012
+ "visibility": null,
1013
+ "width": null
1014
+ }
1015
+ },
1016
+ "d2df0b3067574d46b951890b996a5751": {
1017
+ "model_module": "@jupyter-widgets/base",
1018
+ "model_name": "LayoutModel",
1019
+ "model_module_version": "1.2.0",
1020
+ "state": {
1021
+ "_model_module": "@jupyter-widgets/base",
1022
+ "_model_module_version": "1.2.0",
1023
+ "_model_name": "LayoutModel",
1024
+ "_view_count": null,
1025
+ "_view_module": "@jupyter-widgets/base",
1026
+ "_view_module_version": "1.2.0",
1027
+ "_view_name": "LayoutView",
1028
+ "align_content": null,
1029
+ "align_items": null,
1030
+ "align_self": null,
1031
+ "border": null,
1032
+ "bottom": null,
1033
+ "display": null,
1034
+ "flex": null,
1035
+ "flex_flow": null,
1036
+ "grid_area": null,
1037
+ "grid_auto_columns": null,
1038
+ "grid_auto_flow": null,
1039
+ "grid_auto_rows": null,
1040
+ "grid_column": null,
1041
+ "grid_gap": null,
1042
+ "grid_row": null,
1043
+ "grid_template_areas": null,
1044
+ "grid_template_columns": null,
1045
+ "grid_template_rows": null,
1046
+ "height": null,
1047
+ "justify_content": null,
1048
+ "justify_items": null,
1049
+ "left": null,
1050
+ "margin": null,
1051
+ "max_height": null,
1052
+ "max_width": null,
1053
+ "min_height": null,
1054
+ "min_width": null,
1055
+ "object_fit": null,
1056
+ "object_position": null,
1057
+ "order": null,
1058
+ "overflow": null,
1059
+ "overflow_x": null,
1060
+ "overflow_y": null,
1061
+ "padding": null,
1062
+ "right": null,
1063
+ "top": null,
1064
+ "visibility": null,
1065
+ "width": null
1066
+ }
1067
+ },
1068
+ "b51937856bf64803a85ea7eb30f73cfe": {
1069
+ "model_module": "@jupyter-widgets/controls",
1070
+ "model_name": "DescriptionStyleModel",
1071
+ "model_module_version": "1.5.0",
1072
+ "state": {
1073
+ "_model_module": "@jupyter-widgets/controls",
1074
+ "_model_module_version": "1.5.0",
1075
+ "_model_name": "DescriptionStyleModel",
1076
+ "_view_count": null,
1077
+ "_view_module": "@jupyter-widgets/base",
1078
+ "_view_module_version": "1.2.0",
1079
+ "_view_name": "StyleView",
1080
+ "description_width": ""
1081
+ }
1082
+ },
1083
+ "74fe3cd416994417a2138d8a32beeed8": {
1084
+ "model_module": "@jupyter-widgets/base",
1085
+ "model_name": "LayoutModel",
1086
+ "model_module_version": "1.2.0",
1087
+ "state": {
1088
+ "_model_module": "@jupyter-widgets/base",
1089
+ "_model_module_version": "1.2.0",
1090
+ "_model_name": "LayoutModel",
1091
+ "_view_count": null,
1092
+ "_view_module": "@jupyter-widgets/base",
1093
+ "_view_module_version": "1.2.0",
1094
+ "_view_name": "LayoutView",
1095
+ "align_content": null,
1096
+ "align_items": null,
1097
+ "align_self": null,
1098
+ "border": null,
1099
+ "bottom": null,
1100
+ "display": null,
1101
+ "flex": null,
1102
+ "flex_flow": null,
1103
+ "grid_area": null,
1104
+ "grid_auto_columns": null,
1105
+ "grid_auto_flow": null,
1106
+ "grid_auto_rows": null,
1107
+ "grid_column": null,
1108
+ "grid_gap": null,
1109
+ "grid_row": null,
1110
+ "grid_template_areas": null,
1111
+ "grid_template_columns": null,
1112
+ "grid_template_rows": null,
1113
+ "height": null,
1114
+ "justify_content": null,
1115
+ "justify_items": null,
1116
+ "left": null,
1117
+ "margin": null,
1118
+ "max_height": null,
1119
+ "max_width": null,
1120
+ "min_height": null,
1121
+ "min_width": null,
1122
+ "object_fit": null,
1123
+ "object_position": null,
1124
+ "order": null,
1125
+ "overflow": null,
1126
+ "overflow_x": null,
1127
+ "overflow_y": null,
1128
+ "padding": null,
1129
+ "right": null,
1130
+ "top": null,
1131
+ "visibility": null,
1132
+ "width": null
1133
+ }
1134
+ },
1135
+ "80626b461cce49e7bcb6e3e931c5d81c": {
1136
+ "model_module": "@jupyter-widgets/controls",
1137
+ "model_name": "ProgressStyleModel",
1138
+ "model_module_version": "1.5.0",
1139
+ "state": {
1140
+ "_model_module": "@jupyter-widgets/controls",
1141
+ "_model_module_version": "1.5.0",
1142
+ "_model_name": "ProgressStyleModel",
1143
+ "_view_count": null,
1144
+ "_view_module": "@jupyter-widgets/base",
1145
+ "_view_module_version": "1.2.0",
1146
+ "_view_name": "StyleView",
1147
+ "bar_color": null,
1148
+ "description_width": ""
1149
+ }
1150
+ },
1151
+ "23f0bdb422384eaf94a69d20502fdbe4": {
1152
+ "model_module": "@jupyter-widgets/base",
1153
+ "model_name": "LayoutModel",
1154
+ "model_module_version": "1.2.0",
1155
+ "state": {
1156
+ "_model_module": "@jupyter-widgets/base",
1157
+ "_model_module_version": "1.2.0",
1158
+ "_model_name": "LayoutModel",
1159
+ "_view_count": null,
1160
+ "_view_module": "@jupyter-widgets/base",
1161
+ "_view_module_version": "1.2.0",
1162
+ "_view_name": "LayoutView",
1163
+ "align_content": null,
1164
+ "align_items": null,
1165
+ "align_self": null,
1166
+ "border": null,
1167
+ "bottom": null,
1168
+ "display": null,
1169
+ "flex": null,
1170
+ "flex_flow": null,
1171
+ "grid_area": null,
1172
+ "grid_auto_columns": null,
1173
+ "grid_auto_flow": null,
1174
+ "grid_auto_rows": null,
1175
+ "grid_column": null,
1176
+ "grid_gap": null,
1177
+ "grid_row": null,
1178
+ "grid_template_areas": null,
1179
+ "grid_template_columns": null,
1180
+ "grid_template_rows": null,
1181
+ "height": null,
1182
+ "justify_content": null,
1183
+ "justify_items": null,
1184
+ "left": null,
1185
+ "margin": null,
1186
+ "max_height": null,
1187
+ "max_width": null,
1188
+ "min_height": null,
1189
+ "min_width": null,
1190
+ "object_fit": null,
1191
+ "object_position": null,
1192
+ "order": null,
1193
+ "overflow": null,
1194
+ "overflow_x": null,
1195
+ "overflow_y": null,
1196
+ "padding": null,
1197
+ "right": null,
1198
+ "top": null,
1199
+ "visibility": null,
1200
+ "width": null
1201
+ }
1202
+ },
1203
+ "dfa74d96a1174e7ead6554b5c984f526": {
1204
+ "model_module": "@jupyter-widgets/controls",
1205
+ "model_name": "DescriptionStyleModel",
1206
+ "model_module_version": "1.5.0",
1207
+ "state": {
1208
+ "_model_module": "@jupyter-widgets/controls",
1209
+ "_model_module_version": "1.5.0",
1210
+ "_model_name": "DescriptionStyleModel",
1211
+ "_view_count": null,
1212
+ "_view_module": "@jupyter-widgets/base",
1213
+ "_view_module_version": "1.2.0",
1214
+ "_view_name": "StyleView",
1215
+ "description_width": ""
1216
+ }
1217
+ }
1218
+ }
1219
  }
1220
  },
1221
  "nbformat": 4,
1222
  "nbformat_minor": 0
1223
+ }