JAIGANESAN N
commited on
Commit
Β·
2327a14
1
Parent(s):
a820ac5
upgrade model from GPT-4o-mini to Gemini-1.5-flash
Browse files
notebooks/04_RAG_with_VectorStore.ipynb
ADDED
@@ -0,0 +1,1275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "view-in-github",
|
7 |
+
"colab_type": "text"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/04_RAG_with_VectorStore.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "5BGJ3fxhOk2V"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"# Install Packages and Setup Variables\n"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {
|
26 |
+
"id": "QPJzr-I9XQ7l",
|
27 |
+
"collapsed": true,
|
28 |
+
"outputId": "dad24c44-2f42-4c37-a597-232ccffb9861",
|
29 |
+
"colab": {
|
30 |
+
"base_uri": "https://localhost:8080/"
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"output_type": "stream",
|
36 |
+
"name": "stdout",
|
37 |
+
"text": [
|
38 |
+
"\u001b[?25l \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m0.0/67.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
39 |
+
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
40 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
41 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
42 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
43 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m150.7/150.7 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
44 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m867.6/867.6 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
45 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m337.0/337.0 kB\u001b[0m \u001b[31m28.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
46 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m679.1/679.1 kB\u001b[0m \u001b[31m42.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
47 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.5/15.5 MB\u001b[0m \u001b[31m65.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
48 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m559.5/559.5 kB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
49 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m74.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
50 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m273.8/273.8 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
51 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m94.0/94.0 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
52 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m76.4/76.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
53 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
54 |
+
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½ββββββββ\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m71.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m63.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
56 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m302.9/302.9 kB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
57 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m23.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
58 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m56.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
59 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
60 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m91.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
61 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m64.0/64.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
62 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
63 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m149.7/149.7 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
64 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
65 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
66 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m90.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
68 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
70 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
71 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
72 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m187.4/187.4 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
73 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
74 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
75 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m295.8/295.8 kB\u001b[0m \u001b[31m22.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
76 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.4/71.4 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
77 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m83.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
78 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m425.7/425.7 kB\u001b[0m \u001b[31m30.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
79 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m157.3/157.3 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
80 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
81 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
82 |
+
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
|
83 |
+
]
|
84 |
+
}
|
85 |
+
],
|
86 |
+
"source": [
|
87 |
+
"!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {
|
94 |
+
"id": "riuXwpSPcvWC"
|
95 |
+
},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"import os\n",
|
99 |
+
"# Set the following API Keys in the Python environment. Will be used later.\n",
|
100 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
|
101 |
+
"os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "markdown",
|
106 |
+
"metadata": {
|
107 |
+
"id": "I9JbAzFcjkpn"
|
108 |
+
},
|
109 |
+
"source": [
|
110 |
+
"# Load the Dataset (CSV)\n"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "markdown",
|
115 |
+
"metadata": {
|
116 |
+
"id": "_Tif8-JoRH68"
|
117 |
+
},
|
118 |
+
"source": [
|
119 |
+
"## Download\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "markdown",
|
124 |
+
"metadata": {
|
125 |
+
"id": "4fQaa1LN1mXL"
|
126 |
+
},
|
127 |
+
"source": [
|
128 |
+
"The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string.\n"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"metadata": {
|
135 |
+
"colab": {
|
136 |
+
"base_uri": "https://localhost:8080/"
|
137 |
+
},
|
138 |
+
"id": "-QTUkdfJjY4N",
|
139 |
+
"outputId": "b43abf38-f483-41b6-eb39-c21aa7eca276"
|
140 |
+
},
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"output_type": "stream",
|
144 |
+
"name": "stdout",
|
145 |
+
"text": [
|
146 |
+
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
|
147 |
+
" Dload Upload Total Spent Left Speed\n",
|
148 |
+
"100 169k 100 169k 0 0 559k 0 --:--:-- --:--:-- --:--:-- 557k\n"
|
149 |
+
]
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"source": [
|
153 |
+
"!curl -o ./mini-dataset.csv https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "markdown",
|
158 |
+
"metadata": {
|
159 |
+
"id": "zk-4alIxROo8"
|
160 |
+
},
|
161 |
+
"source": [
|
162 |
+
"## Read File\n"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": null,
|
168 |
+
"metadata": {
|
169 |
+
"colab": {
|
170 |
+
"base_uri": "https://localhost:8080/"
|
171 |
+
},
|
172 |
+
"id": "7CYwRT6R0o0I",
|
173 |
+
"outputId": "bdcf783d-c75b-4650-dafe-70f99ddd7e76"
|
174 |
+
},
|
175 |
+
"outputs": [
|
176 |
+
{
|
177 |
+
"output_type": "stream",
|
178 |
+
"name": "stdout",
|
179 |
+
"text": [
|
180 |
+
"171044\n"
|
181 |
+
]
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"import csv\n",
|
186 |
+
"\n",
|
187 |
+
"text = \"\"\n",
|
188 |
+
"\n",
|
189 |
+
"# Load the file as a JSON\n",
|
190 |
+
"with open(\"./mini-dataset.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
|
191 |
+
" csv_reader = csv.reader(file)\n",
|
192 |
+
"\n",
|
193 |
+
" for idx, row in enumerate(csv_reader):\n",
|
194 |
+
" if idx == 0:\n",
|
195 |
+
" continue\n",
|
196 |
+
" text += row[1]\n",
|
197 |
+
"\n",
|
198 |
+
"# The number of characters in the dataset.\n",
|
199 |
+
"print(len(text))"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "markdown",
|
204 |
+
"metadata": {
|
205 |
+
"id": "S17g2RYOjmf2"
|
206 |
+
},
|
207 |
+
"source": [
|
208 |
+
"# Chunking\n"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"metadata": {
|
215 |
+
"colab": {
|
216 |
+
"base_uri": "https://localhost:8080/"
|
217 |
+
},
|
218 |
+
"id": "STACTMUR1z9N",
|
219 |
+
"outputId": "bc0c4808-f709-4eee-bb07-0993a2cb8f73"
|
220 |
+
},
|
221 |
+
"outputs": [
|
222 |
+
{
|
223 |
+
"output_type": "stream",
|
224 |
+
"name": "stdout",
|
225 |
+
"text": [
|
226 |
+
"335\n"
|
227 |
+
]
|
228 |
+
}
|
229 |
+
],
|
230 |
+
"source": [
|
231 |
+
"chunk_size = 512\n",
|
232 |
+
"chunks = []\n",
|
233 |
+
"\n",
|
234 |
+
"# Split the long text into smaller manageable chunks of 512 characters.\n",
|
235 |
+
"for i in range(0, len(text), chunk_size):\n",
|
236 |
+
" chunks.append(text[i : i + chunk_size])\n",
|
237 |
+
"\n",
|
238 |
+
"print(len(chunks))"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "markdown",
|
243 |
+
"metadata": {
|
244 |
+
"id": "9fOomeMGqu10"
|
245 |
+
},
|
246 |
+
"source": [
|
247 |
+
"#Interface of Chroma with LlamaIndex\n"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"metadata": {
|
254 |
+
"id": "CtdsIUQ81_hT"
|
255 |
+
},
|
256 |
+
"outputs": [],
|
257 |
+
"source": [
|
258 |
+
"from llama_index.core import Document\n",
|
259 |
+
"\n",
|
260 |
+
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
|
261 |
+
"documents = [Document(text=t) for t in chunks]"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"metadata": {
|
267 |
+
"id": "OWaT6rL7ksp8"
|
268 |
+
},
|
269 |
+
"source": [
|
270 |
+
"Save on Chroma\n"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": null,
|
276 |
+
"metadata": {
|
277 |
+
"id": "mXi56KTXk2sp"
|
278 |
+
},
|
279 |
+
"outputs": [],
|
280 |
+
"source": [
|
281 |
+
"import chromadb\n",
|
282 |
+
"\n",
|
283 |
+
"# create client and a new collection\n",
|
284 |
+
"# chromadb.EphemeralClient saves data in-memory.\n",
|
285 |
+
"chroma_client = chromadb.PersistentClient(path=\"./mini-chunked-dataset\")\n",
|
286 |
+
"chroma_collection = chroma_client.create_collection(\"mini-chunked-dataset\")"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
+
"metadata": {
|
293 |
+
"id": "jKXURvLtkuTS"
|
294 |
+
},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
|
298 |
+
"from llama_index.core import StorageContext\n",
|
299 |
+
"\n",
|
300 |
+
"# Define a storage context object using the created vector database.\n",
|
301 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
302 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"metadata": {
|
309 |
+
"id": "WsD52wtrlESi",
|
310 |
+
"outputId": "975aeeeb-df70-4946-d306-54aab19d3f09",
|
311 |
+
"colab": {
|
312 |
+
"base_uri": "https://localhost:8080/",
|
313 |
+
"height": 81,
|
314 |
+
"referenced_widgets": [
|
315 |
+
"be409ad8ca7e42b2aac87e193d55d116",
|
316 |
+
"2985c54fc3834d8599323f52075a01a6",
|
317 |
+
"a96efe0fc89e42748f1c37fdc000056b",
|
318 |
+
"29bbfc318ffd4a8e9452960f0f2ccb8d",
|
319 |
+
"393c4f0d140c4259add663bf43767cbb",
|
320 |
+
"77a5354e5209441bb6a69b71f96a2102",
|
321 |
+
"4d682a386d1146cf828470083fba1fe6",
|
322 |
+
"cf7bcdd679b9462285c619966a49f6d1",
|
323 |
+
"2f0ec2b1e52d441ca835deb88cb9349f",
|
324 |
+
"555508eb2f8c4caf81b623a8c157e742",
|
325 |
+
"8035840c130f4804b9da0958d23713bc",
|
326 |
+
"6d93958f663f48b4922a9524efb70e91",
|
327 |
+
"4b42d724b989497faee4836a1e2dda70",
|
328 |
+
"cbe2e4a95f2e412f83fed16bc5db08ad",
|
329 |
+
"1f3d664867634613a30281f61ab33ac7",
|
330 |
+
"aab9626f226c4c83908c3b042d6e4bdb",
|
331 |
+
"eecd42e03f4d484c87032c25df7570b3",
|
332 |
+
"1956d41b8b9540c99fb9b4a4df7bbaa2",
|
333 |
+
"d800ddbadddd48ecbbaf0dd39035d275",
|
334 |
+
"9d58bc10ef844753a17505aca55e079a",
|
335 |
+
"91ca1a302884473f8314c097c41d03fd",
|
336 |
+
"b71c84b4ca3443d29d650bb8ea0f5458"
|
337 |
+
]
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"outputs": [
|
341 |
+
{
|
342 |
+
"output_type": "display_data",
|
343 |
+
"data": {
|
344 |
+
"text/plain": [
|
345 |
+
"Parsing nodes: 0%| | 0/335 [00:00<?, ?it/s]"
|
346 |
+
],
|
347 |
+
"application/vnd.jupyter.widget-view+json": {
|
348 |
+
"version_major": 2,
|
349 |
+
"version_minor": 0,
|
350 |
+
"model_id": "be409ad8ca7e42b2aac87e193d55d116"
|
351 |
+
}
|
352 |
+
},
|
353 |
+
"metadata": {}
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"output_type": "display_data",
|
357 |
+
"data": {
|
358 |
+
"text/plain": [
|
359 |
+
"Generating embeddings: 0%| | 0/335 [00:00<?, ?it/s]"
|
360 |
+
],
|
361 |
+
"application/vnd.jupyter.widget-view+json": {
|
362 |
+
"version_major": 2,
|
363 |
+
"version_minor": 0,
|
364 |
+
"model_id": "6d93958f663f48b4922a9524efb70e91"
|
365 |
+
}
|
366 |
+
},
|
367 |
+
"metadata": {}
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"source": [
|
371 |
+
"from llama_index.core import VectorStoreIndex\n",
|
372 |
+
"from llama_index.core.node_parser import SentenceSplitter\n",
|
373 |
+
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
|
374 |
+
"\n",
|
375 |
+
"# Build index / generate embeddings using OpenAI embedding model\n",
|
376 |
+
"index = VectorStoreIndex.from_documents(\n",
|
377 |
+
" documents,\n",
|
378 |
+
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\"),\n",
|
379 |
+
" storage_context=storage_context,\n",
|
380 |
+
" show_progress=True,\n",
|
381 |
+
")"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "markdown",
|
386 |
+
"metadata": {
|
387 |
+
"id": "8JPD8yAinVSq"
|
388 |
+
},
|
389 |
+
"source": [
|
390 |
+
"Query Dataset\n"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": null,
|
396 |
+
"metadata": {
|
397 |
+
"id": "mzS13x1ZlZ5X"
|
398 |
+
},
|
399 |
+
"outputs": [],
|
400 |
+
"source": [
|
401 |
+
"# Define a query engine that is responsible for retrieving related pieces of text,\n",
|
402 |
+
"# and using a LLM to formulate the final answer.\n",
|
403 |
+
"\n",
|
404 |
+
"from llama_index.llms.gemini import Gemini\n",
|
405 |
+
"\n",
|
406 |
+
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)\n",
|
407 |
+
"\n",
|
408 |
+
"query_engine = index.as_query_engine(llm=llm, similarity_top_k=5)"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": null,
|
414 |
+
"metadata": {
|
415 |
+
"colab": {
|
416 |
+
"base_uri": "https://localhost:8080/",
|
417 |
+
"height": 52
|
418 |
+
},
|
419 |
+
"id": "AYsQ4uLN_Oxg",
|
420 |
+
"outputId": "1acd38f6-d083-4d4a-aff2-a0063561adc1"
|
421 |
+
},
|
422 |
+
"outputs": [
|
423 |
+
{
|
424 |
+
"output_type": "stream",
|
425 |
+
"name": "stdout",
|
426 |
+
"text": [
|
427 |
+
"The LLaMA 2 model has four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
|
428 |
+
"\n"
|
429 |
+
]
|
430 |
+
}
|
431 |
+
],
|
432 |
+
"source": [
|
433 |
+
"response = query_engine.query(\"How many parameters LLaMA2 model has?\")\n",
|
434 |
+
"print(response)"
|
435 |
+
]
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"cell_type": "markdown",
|
439 |
+
"metadata": {
|
440 |
+
"id": "kWK571VNg-qR"
|
441 |
+
},
|
442 |
+
"source": [
|
443 |
+
"# Interface of Chroma with LangChain\n"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"execution_count": null,
|
449 |
+
"metadata": {
|
450 |
+
"id": "SMPAniL2e4NP"
|
451 |
+
},
|
452 |
+
"outputs": [],
|
453 |
+
"source": [
|
454 |
+
"from langchain.schema.document import Document\n",
|
455 |
+
"\n",
|
456 |
+
"# Convert the chunks to Document objects so the LangChain framework can process them.\n",
|
457 |
+
"documents = [Document(page_content=t) for t in chunks]"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "markdown",
|
462 |
+
"metadata": {
|
463 |
+
"id": "QBt8qGxArUPD"
|
464 |
+
},
|
465 |
+
"source": [
|
466 |
+
"Save on Chroma\n"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": null,
|
472 |
+
"metadata": {
|
473 |
+
"id": "2xas7HkuhJ8A"
|
474 |
+
},
|
475 |
+
"outputs": [],
|
476 |
+
"source": [
|
477 |
+
"from langchain_chroma import Chroma\n",
|
478 |
+
"from langchain_openai import OpenAIEmbeddings\n",
|
479 |
+
"\n",
|
480 |
+
"# Add the documents to chroma DB and create Index / embeddings\n",
|
481 |
+
"\n",
|
482 |
+
"embeddings = OpenAIEmbeddings(model=\"text-embedding-3-small\")\n",
|
483 |
+
"chroma_db = Chroma.from_documents(\n",
|
484 |
+
" documents=documents,\n",
|
485 |
+
" embedding=embeddings,\n",
|
486 |
+
" persist_directory=\"./mini-chunked-dataset\",\n",
|
487 |
+
" collection_name=\"mini-chunked-dataset\",\n",
|
488 |
+
")"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "markdown",
|
493 |
+
"metadata": {
|
494 |
+
"id": "P8AXJJyBrZWF"
|
495 |
+
},
|
496 |
+
"source": [
|
497 |
+
"Query Dataset\n"
|
498 |
+
]
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "code",
|
502 |
+
"execution_count": null,
|
503 |
+
"metadata": {
|
504 |
+
"id": "-H64YLxshM2b"
|
505 |
+
},
|
506 |
+
"outputs": [],
|
507 |
+
"source": [
|
508 |
+
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
|
509 |
+
"\n",
|
510 |
+
"# Initializing the LLM model\n",
|
511 |
+
"#llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\", max_tokens=512)\n",
|
512 |
+
"\n",
|
513 |
+
"llm = ChatGoogleGenerativeAI(\n",
|
514 |
+
" model=\"gemini-1.5-flash\",\n",
|
515 |
+
" temperature=0,\n",
|
516 |
+
" max_tokens=512,\n",
|
517 |
+
")"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"cell_type": "code",
|
522 |
+
"execution_count": null,
|
523 |
+
"metadata": {
|
524 |
+
"colab": {
|
525 |
+
"base_uri": "https://localhost:8080/"
|
526 |
+
},
|
527 |
+
"id": "AxBqPNtthPaa",
|
528 |
+
"outputId": "138a1238-97b8-41e1-9fd7-d655997d0743"
|
529 |
+
},
|
530 |
+
"outputs": [
|
531 |
+
{
|
532 |
+
"output_type": "stream",
|
533 |
+
"name": "stdout",
|
534 |
+
"text": [
|
535 |
+
"I'm sorry, but the provided context doesn't mention the number of parameters for the LLaMA2 model. \n",
|
536 |
+
"\n"
|
537 |
+
]
|
538 |
+
}
|
539 |
+
],
|
540 |
+
"source": [
|
541 |
+
"from langchain.chains import RetrievalQA\n",
|
542 |
+
"\n",
|
543 |
+
"query = \"How many parameters LLaMA2 model has?\"\n",
|
544 |
+
"retriever = chroma_db.as_retriever(search_kwargs={\"k\": 2})\n",
|
545 |
+
"# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
|
546 |
+
"# and using a LLM to formulate the final answer.\n",
|
547 |
+
"chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
|
548 |
+
"\n",
|
549 |
+
"response = chain.invoke(query)\n",
|
550 |
+
"print(response[\"result\"])"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "code",
|
555 |
+
"source": [],
|
556 |
+
"metadata": {
|
557 |
+
"id": "AKr16L_kwyYX"
|
558 |
+
},
|
559 |
+
"execution_count": null,
|
560 |
+
"outputs": []
|
561 |
+
}
|
562 |
+
],
|
563 |
+
"metadata": {
|
564 |
+
"colab": {
|
565 |
+
"provenance": [],
|
566 |
+
"include_colab_link": true
|
567 |
+
},
|
568 |
+
"kernelspec": {
|
569 |
+
"display_name": "Python 3",
|
570 |
+
"name": "python3"
|
571 |
+
},
|
572 |
+
"language_info": {
|
573 |
+
"codemirror_mode": {
|
574 |
+
"name": "ipython",
|
575 |
+
"version": 3
|
576 |
+
},
|
577 |
+
"file_extension": ".py",
|
578 |
+
"mimetype": "text/x-python",
|
579 |
+
"name": "python",
|
580 |
+
"nbconvert_exporter": "python",
|
581 |
+
"pygments_lexer": "ipython3",
|
582 |
+
"version": "3.12.4"
|
583 |
+
},
|
584 |
+
"widgets": {
|
585 |
+
"application/vnd.jupyter.widget-state+json": {
|
586 |
+
"be409ad8ca7e42b2aac87e193d55d116": {
|
587 |
+
"model_module": "@jupyter-widgets/controls",
|
588 |
+
"model_name": "HBoxModel",
|
589 |
+
"model_module_version": "1.5.0",
|
590 |
+
"state": {
|
591 |
+
"_dom_classes": [],
|
592 |
+
"_model_module": "@jupyter-widgets/controls",
|
593 |
+
"_model_module_version": "1.5.0",
|
594 |
+
"_model_name": "HBoxModel",
|
595 |
+
"_view_count": null,
|
596 |
+
"_view_module": "@jupyter-widgets/controls",
|
597 |
+
"_view_module_version": "1.5.0",
|
598 |
+
"_view_name": "HBoxView",
|
599 |
+
"box_style": "",
|
600 |
+
"children": [
|
601 |
+
"IPY_MODEL_2985c54fc3834d8599323f52075a01a6",
|
602 |
+
"IPY_MODEL_a96efe0fc89e42748f1c37fdc000056b",
|
603 |
+
"IPY_MODEL_29bbfc318ffd4a8e9452960f0f2ccb8d"
|
604 |
+
],
|
605 |
+
"layout": "IPY_MODEL_393c4f0d140c4259add663bf43767cbb"
|
606 |
+
}
|
607 |
+
},
|
608 |
+
"2985c54fc3834d8599323f52075a01a6": {
|
609 |
+
"model_module": "@jupyter-widgets/controls",
|
610 |
+
"model_name": "HTMLModel",
|
611 |
+
"model_module_version": "1.5.0",
|
612 |
+
"state": {
|
613 |
+
"_dom_classes": [],
|
614 |
+
"_model_module": "@jupyter-widgets/controls",
|
615 |
+
"_model_module_version": "1.5.0",
|
616 |
+
"_model_name": "HTMLModel",
|
617 |
+
"_view_count": null,
|
618 |
+
"_view_module": "@jupyter-widgets/controls",
|
619 |
+
"_view_module_version": "1.5.0",
|
620 |
+
"_view_name": "HTMLView",
|
621 |
+
"description": "",
|
622 |
+
"description_tooltip": null,
|
623 |
+
"layout": "IPY_MODEL_77a5354e5209441bb6a69b71f96a2102",
|
624 |
+
"placeholder": "β",
|
625 |
+
"style": "IPY_MODEL_4d682a386d1146cf828470083fba1fe6",
|
626 |
+
"value": "Parsingβnodes:β100%"
|
627 |
+
}
|
628 |
+
},
|
629 |
+
"a96efe0fc89e42748f1c37fdc000056b": {
|
630 |
+
"model_module": "@jupyter-widgets/controls",
|
631 |
+
"model_name": "FloatProgressModel",
|
632 |
+
"model_module_version": "1.5.0",
|
633 |
+
"state": {
|
634 |
+
"_dom_classes": [],
|
635 |
+
"_model_module": "@jupyter-widgets/controls",
|
636 |
+
"_model_module_version": "1.5.0",
|
637 |
+
"_model_name": "FloatProgressModel",
|
638 |
+
"_view_count": null,
|
639 |
+
"_view_module": "@jupyter-widgets/controls",
|
640 |
+
"_view_module_version": "1.5.0",
|
641 |
+
"_view_name": "ProgressView",
|
642 |
+
"bar_style": "success",
|
643 |
+
"description": "",
|
644 |
+
"description_tooltip": null,
|
645 |
+
"layout": "IPY_MODEL_cf7bcdd679b9462285c619966a49f6d1",
|
646 |
+
"max": 335,
|
647 |
+
"min": 0,
|
648 |
+
"orientation": "horizontal",
|
649 |
+
"style": "IPY_MODEL_2f0ec2b1e52d441ca835deb88cb9349f",
|
650 |
+
"value": 335
|
651 |
+
}
|
652 |
+
},
|
653 |
+
"29bbfc318ffd4a8e9452960f0f2ccb8d": {
|
654 |
+
"model_module": "@jupyter-widgets/controls",
|
655 |
+
"model_name": "HTMLModel",
|
656 |
+
"model_module_version": "1.5.0",
|
657 |
+
"state": {
|
658 |
+
"_dom_classes": [],
|
659 |
+
"_model_module": "@jupyter-widgets/controls",
|
660 |
+
"_model_module_version": "1.5.0",
|
661 |
+
"_model_name": "HTMLModel",
|
662 |
+
"_view_count": null,
|
663 |
+
"_view_module": "@jupyter-widgets/controls",
|
664 |
+
"_view_module_version": "1.5.0",
|
665 |
+
"_view_name": "HTMLView",
|
666 |
+
"description": "",
|
667 |
+
"description_tooltip": null,
|
668 |
+
"layout": "IPY_MODEL_555508eb2f8c4caf81b623a8c157e742",
|
669 |
+
"placeholder": "β",
|
670 |
+
"style": "IPY_MODEL_8035840c130f4804b9da0958d23713bc",
|
671 |
+
"value": "β335/335β[00:00<00:00,β599.37it/s]"
|
672 |
+
}
|
673 |
+
},
|
674 |
+
"393c4f0d140c4259add663bf43767cbb": {
|
675 |
+
"model_module": "@jupyter-widgets/base",
|
676 |
+
"model_name": "LayoutModel",
|
677 |
+
"model_module_version": "1.2.0",
|
678 |
+
"state": {
|
679 |
+
"_model_module": "@jupyter-widgets/base",
|
680 |
+
"_model_module_version": "1.2.0",
|
681 |
+
"_model_name": "LayoutModel",
|
682 |
+
"_view_count": null,
|
683 |
+
"_view_module": "@jupyter-widgets/base",
|
684 |
+
"_view_module_version": "1.2.0",
|
685 |
+
"_view_name": "LayoutView",
|
686 |
+
"align_content": null,
|
687 |
+
"align_items": null,
|
688 |
+
"align_self": null,
|
689 |
+
"border": null,
|
690 |
+
"bottom": null,
|
691 |
+
"display": null,
|
692 |
+
"flex": null,
|
693 |
+
"flex_flow": null,
|
694 |
+
"grid_area": null,
|
695 |
+
"grid_auto_columns": null,
|
696 |
+
"grid_auto_flow": null,
|
697 |
+
"grid_auto_rows": null,
|
698 |
+
"grid_column": null,
|
699 |
+
"grid_gap": null,
|
700 |
+
"grid_row": null,
|
701 |
+
"grid_template_areas": null,
|
702 |
+
"grid_template_columns": null,
|
703 |
+
"grid_template_rows": null,
|
704 |
+
"height": null,
|
705 |
+
"justify_content": null,
|
706 |
+
"justify_items": null,
|
707 |
+
"left": null,
|
708 |
+
"margin": null,
|
709 |
+
"max_height": null,
|
710 |
+
"max_width": null,
|
711 |
+
"min_height": null,
|
712 |
+
"min_width": null,
|
713 |
+
"object_fit": null,
|
714 |
+
"object_position": null,
|
715 |
+
"order": null,
|
716 |
+
"overflow": null,
|
717 |
+
"overflow_x": null,
|
718 |
+
"overflow_y": null,
|
719 |
+
"padding": null,
|
720 |
+
"right": null,
|
721 |
+
"top": null,
|
722 |
+
"visibility": null,
|
723 |
+
"width": null
|
724 |
+
}
|
725 |
+
},
|
726 |
+
"77a5354e5209441bb6a69b71f96a2102": {
|
727 |
+
"model_module": "@jupyter-widgets/base",
|
728 |
+
"model_name": "LayoutModel",
|
729 |
+
"model_module_version": "1.2.0",
|
730 |
+
"state": {
|
731 |
+
"_model_module": "@jupyter-widgets/base",
|
732 |
+
"_model_module_version": "1.2.0",
|
733 |
+
"_model_name": "LayoutModel",
|
734 |
+
"_view_count": null,
|
735 |
+
"_view_module": "@jupyter-widgets/base",
|
736 |
+
"_view_module_version": "1.2.0",
|
737 |
+
"_view_name": "LayoutView",
|
738 |
+
"align_content": null,
|
739 |
+
"align_items": null,
|
740 |
+
"align_self": null,
|
741 |
+
"border": null,
|
742 |
+
"bottom": null,
|
743 |
+
"display": null,
|
744 |
+
"flex": null,
|
745 |
+
"flex_flow": null,
|
746 |
+
"grid_area": null,
|
747 |
+
"grid_auto_columns": null,
|
748 |
+
"grid_auto_flow": null,
|
749 |
+
"grid_auto_rows": null,
|
750 |
+
"grid_column": null,
|
751 |
+
"grid_gap": null,
|
752 |
+
"grid_row": null,
|
753 |
+
"grid_template_areas": null,
|
754 |
+
"grid_template_columns": null,
|
755 |
+
"grid_template_rows": null,
|
756 |
+
"height": null,
|
757 |
+
"justify_content": null,
|
758 |
+
"justify_items": null,
|
759 |
+
"left": null,
|
760 |
+
"margin": null,
|
761 |
+
"max_height": null,
|
762 |
+
"max_width": null,
|
763 |
+
"min_height": null,
|
764 |
+
"min_width": null,
|
765 |
+
"object_fit": null,
|
766 |
+
"object_position": null,
|
767 |
+
"order": null,
|
768 |
+
"overflow": null,
|
769 |
+
"overflow_x": null,
|
770 |
+
"overflow_y": null,
|
771 |
+
"padding": null,
|
772 |
+
"right": null,
|
773 |
+
"top": null,
|
774 |
+
"visibility": null,
|
775 |
+
"width": null
|
776 |
+
}
|
777 |
+
},
|
778 |
+
"4d682a386d1146cf828470083fba1fe6": {
|
779 |
+
"model_module": "@jupyter-widgets/controls",
|
780 |
+
"model_name": "DescriptionStyleModel",
|
781 |
+
"model_module_version": "1.5.0",
|
782 |
+
"state": {
|
783 |
+
"_model_module": "@jupyter-widgets/controls",
|
784 |
+
"_model_module_version": "1.5.0",
|
785 |
+
"_model_name": "DescriptionStyleModel",
|
786 |
+
"_view_count": null,
|
787 |
+
"_view_module": "@jupyter-widgets/base",
|
788 |
+
"_view_module_version": "1.2.0",
|
789 |
+
"_view_name": "StyleView",
|
790 |
+
"description_width": ""
|
791 |
+
}
|
792 |
+
},
|
793 |
+
"cf7bcdd679b9462285c619966a49f6d1": {
|
794 |
+
"model_module": "@jupyter-widgets/base",
|
795 |
+
"model_name": "LayoutModel",
|
796 |
+
"model_module_version": "1.2.0",
|
797 |
+
"state": {
|
798 |
+
"_model_module": "@jupyter-widgets/base",
|
799 |
+
"_model_module_version": "1.2.0",
|
800 |
+
"_model_name": "LayoutModel",
|
801 |
+
"_view_count": null,
|
802 |
+
"_view_module": "@jupyter-widgets/base",
|
803 |
+
"_view_module_version": "1.2.0",
|
804 |
+
"_view_name": "LayoutView",
|
805 |
+
"align_content": null,
|
806 |
+
"align_items": null,
|
807 |
+
"align_self": null,
|
808 |
+
"border": null,
|
809 |
+
"bottom": null,
|
810 |
+
"display": null,
|
811 |
+
"flex": null,
|
812 |
+
"flex_flow": null,
|
813 |
+
"grid_area": null,
|
814 |
+
"grid_auto_columns": null,
|
815 |
+
"grid_auto_flow": null,
|
816 |
+
"grid_auto_rows": null,
|
817 |
+
"grid_column": null,
|
818 |
+
"grid_gap": null,
|
819 |
+
"grid_row": null,
|
820 |
+
"grid_template_areas": null,
|
821 |
+
"grid_template_columns": null,
|
822 |
+
"grid_template_rows": null,
|
823 |
+
"height": null,
|
824 |
+
"justify_content": null,
|
825 |
+
"justify_items": null,
|
826 |
+
"left": null,
|
827 |
+
"margin": null,
|
828 |
+
"max_height": null,
|
829 |
+
"max_width": null,
|
830 |
+
"min_height": null,
|
831 |
+
"min_width": null,
|
832 |
+
"object_fit": null,
|
833 |
+
"object_position": null,
|
834 |
+
"order": null,
|
835 |
+
"overflow": null,
|
836 |
+
"overflow_x": null,
|
837 |
+
"overflow_y": null,
|
838 |
+
"padding": null,
|
839 |
+
"right": null,
|
840 |
+
"top": null,
|
841 |
+
"visibility": null,
|
842 |
+
"width": null
|
843 |
+
}
|
844 |
+
},
|
845 |
+
"2f0ec2b1e52d441ca835deb88cb9349f": {
|
846 |
+
"model_module": "@jupyter-widgets/controls",
|
847 |
+
"model_name": "ProgressStyleModel",
|
848 |
+
"model_module_version": "1.5.0",
|
849 |
+
"state": {
|
850 |
+
"_model_module": "@jupyter-widgets/controls",
|
851 |
+
"_model_module_version": "1.5.0",
|
852 |
+
"_model_name": "ProgressStyleModel",
|
853 |
+
"_view_count": null,
|
854 |
+
"_view_module": "@jupyter-widgets/base",
|
855 |
+
"_view_module_version": "1.2.0",
|
856 |
+
"_view_name": "StyleView",
|
857 |
+
"bar_color": null,
|
858 |
+
"description_width": ""
|
859 |
+
}
|
860 |
+
},
|
861 |
+
"555508eb2f8c4caf81b623a8c157e742": {
|
862 |
+
"model_module": "@jupyter-widgets/base",
|
863 |
+
"model_name": "LayoutModel",
|
864 |
+
"model_module_version": "1.2.0",
|
865 |
+
"state": {
|
866 |
+
"_model_module": "@jupyter-widgets/base",
|
867 |
+
"_model_module_version": "1.2.0",
|
868 |
+
"_model_name": "LayoutModel",
|
869 |
+
"_view_count": null,
|
870 |
+
"_view_module": "@jupyter-widgets/base",
|
871 |
+
"_view_module_version": "1.2.0",
|
872 |
+
"_view_name": "LayoutView",
|
873 |
+
"align_content": null,
|
874 |
+
"align_items": null,
|
875 |
+
"align_self": null,
|
876 |
+
"border": null,
|
877 |
+
"bottom": null,
|
878 |
+
"display": null,
|
879 |
+
"flex": null,
|
880 |
+
"flex_flow": null,
|
881 |
+
"grid_area": null,
|
882 |
+
"grid_auto_columns": null,
|
883 |
+
"grid_auto_flow": null,
|
884 |
+
"grid_auto_rows": null,
|
885 |
+
"grid_column": null,
|
886 |
+
"grid_gap": null,
|
887 |
+
"grid_row": null,
|
888 |
+
"grid_template_areas": null,
|
889 |
+
"grid_template_columns": null,
|
890 |
+
"grid_template_rows": null,
|
891 |
+
"height": null,
|
892 |
+
"justify_content": null,
|
893 |
+
"justify_items": null,
|
894 |
+
"left": null,
|
895 |
+
"margin": null,
|
896 |
+
"max_height": null,
|
897 |
+
"max_width": null,
|
898 |
+
"min_height": null,
|
899 |
+
"min_width": null,
|
900 |
+
"object_fit": null,
|
901 |
+
"object_position": null,
|
902 |
+
"order": null,
|
903 |
+
"overflow": null,
|
904 |
+
"overflow_x": null,
|
905 |
+
"overflow_y": null,
|
906 |
+
"padding": null,
|
907 |
+
"right": null,
|
908 |
+
"top": null,
|
909 |
+
"visibility": null,
|
910 |
+
"width": null
|
911 |
+
}
|
912 |
+
},
|
913 |
+
"8035840c130f4804b9da0958d23713bc": {
|
914 |
+
"model_module": "@jupyter-widgets/controls",
|
915 |
+
"model_name": "DescriptionStyleModel",
|
916 |
+
"model_module_version": "1.5.0",
|
917 |
+
"state": {
|
918 |
+
"_model_module": "@jupyter-widgets/controls",
|
919 |
+
"_model_module_version": "1.5.0",
|
920 |
+
"_model_name": "DescriptionStyleModel",
|
921 |
+
"_view_count": null,
|
922 |
+
"_view_module": "@jupyter-widgets/base",
|
923 |
+
"_view_module_version": "1.2.0",
|
924 |
+
"_view_name": "StyleView",
|
925 |
+
"description_width": ""
|
926 |
+
}
|
927 |
+
},
|
928 |
+
"6d93958f663f48b4922a9524efb70e91": {
|
929 |
+
"model_module": "@jupyter-widgets/controls",
|
930 |
+
"model_name": "HBoxModel",
|
931 |
+
"model_module_version": "1.5.0",
|
932 |
+
"state": {
|
933 |
+
"_dom_classes": [],
|
934 |
+
"_model_module": "@jupyter-widgets/controls",
|
935 |
+
"_model_module_version": "1.5.0",
|
936 |
+
"_model_name": "HBoxModel",
|
937 |
+
"_view_count": null,
|
938 |
+
"_view_module": "@jupyter-widgets/controls",
|
939 |
+
"_view_module_version": "1.5.0",
|
940 |
+
"_view_name": "HBoxView",
|
941 |
+
"box_style": "",
|
942 |
+
"children": [
|
943 |
+
"IPY_MODEL_4b42d724b989497faee4836a1e2dda70",
|
944 |
+
"IPY_MODEL_cbe2e4a95f2e412f83fed16bc5db08ad",
|
945 |
+
"IPY_MODEL_1f3d664867634613a30281f61ab33ac7"
|
946 |
+
],
|
947 |
+
"layout": "IPY_MODEL_aab9626f226c4c83908c3b042d6e4bdb"
|
948 |
+
}
|
949 |
+
},
|
950 |
+
"4b42d724b989497faee4836a1e2dda70": {
|
951 |
+
"model_module": "@jupyter-widgets/controls",
|
952 |
+
"model_name": "HTMLModel",
|
953 |
+
"model_module_version": "1.5.0",
|
954 |
+
"state": {
|
955 |
+
"_dom_classes": [],
|
956 |
+
"_model_module": "@jupyter-widgets/controls",
|
957 |
+
"_model_module_version": "1.5.0",
|
958 |
+
"_model_name": "HTMLModel",
|
959 |
+
"_view_count": null,
|
960 |
+
"_view_module": "@jupyter-widgets/controls",
|
961 |
+
"_view_module_version": "1.5.0",
|
962 |
+
"_view_name": "HTMLView",
|
963 |
+
"description": "",
|
964 |
+
"description_tooltip": null,
|
965 |
+
"layout": "IPY_MODEL_eecd42e03f4d484c87032c25df7570b3",
|
966 |
+
"placeholder": "β",
|
967 |
+
"style": "IPY_MODEL_1956d41b8b9540c99fb9b4a4df7bbaa2",
|
968 |
+
"value": "Generatingβembeddings:β100%"
|
969 |
+
}
|
970 |
+
},
|
971 |
+
"cbe2e4a95f2e412f83fed16bc5db08ad": {
|
972 |
+
"model_module": "@jupyter-widgets/controls",
|
973 |
+
"model_name": "FloatProgressModel",
|
974 |
+
"model_module_version": "1.5.0",
|
975 |
+
"state": {
|
976 |
+
"_dom_classes": [],
|
977 |
+
"_model_module": "@jupyter-widgets/controls",
|
978 |
+
"_model_module_version": "1.5.0",
|
979 |
+
"_model_name": "FloatProgressModel",
|
980 |
+
"_view_count": null,
|
981 |
+
"_view_module": "@jupyter-widgets/controls",
|
982 |
+
"_view_module_version": "1.5.0",
|
983 |
+
"_view_name": "ProgressView",
|
984 |
+
"bar_style": "success",
|
985 |
+
"description": "",
|
986 |
+
"description_tooltip": null,
|
987 |
+
"layout": "IPY_MODEL_d800ddbadddd48ecbbaf0dd39035d275",
|
988 |
+
"max": 335,
|
989 |
+
"min": 0,
|
990 |
+
"orientation": "horizontal",
|
991 |
+
"style": "IPY_MODEL_9d58bc10ef844753a17505aca55e079a",
|
992 |
+
"value": 335
|
993 |
+
}
|
994 |
+
},
|
995 |
+
"1f3d664867634613a30281f61ab33ac7": {
|
996 |
+
"model_module": "@jupyter-widgets/controls",
|
997 |
+
"model_name": "HTMLModel",
|
998 |
+
"model_module_version": "1.5.0",
|
999 |
+
"state": {
|
1000 |
+
"_dom_classes": [],
|
1001 |
+
"_model_module": "@jupyter-widgets/controls",
|
1002 |
+
"_model_module_version": "1.5.0",
|
1003 |
+
"_model_name": "HTMLModel",
|
1004 |
+
"_view_count": null,
|
1005 |
+
"_view_module": "@jupyter-widgets/controls",
|
1006 |
+
"_view_module_version": "1.5.0",
|
1007 |
+
"_view_name": "HTMLView",
|
1008 |
+
"description": "",
|
1009 |
+
"description_tooltip": null,
|
1010 |
+
"layout": "IPY_MODEL_91ca1a302884473f8314c097c41d03fd",
|
1011 |
+
"placeholder": "β",
|
1012 |
+
"style": "IPY_MODEL_b71c84b4ca3443d29d650bb8ea0f5458",
|
1013 |
+
"value": "β335/335β[00:05<00:00,β58.54it/s]"
|
1014 |
+
}
|
1015 |
+
},
|
1016 |
+
"aab9626f226c4c83908c3b042d6e4bdb": {
|
1017 |
+
"model_module": "@jupyter-widgets/base",
|
1018 |
+
"model_name": "LayoutModel",
|
1019 |
+
"model_module_version": "1.2.0",
|
1020 |
+
"state": {
|
1021 |
+
"_model_module": "@jupyter-widgets/base",
|
1022 |
+
"_model_module_version": "1.2.0",
|
1023 |
+
"_model_name": "LayoutModel",
|
1024 |
+
"_view_count": null,
|
1025 |
+
"_view_module": "@jupyter-widgets/base",
|
1026 |
+
"_view_module_version": "1.2.0",
|
1027 |
+
"_view_name": "LayoutView",
|
1028 |
+
"align_content": null,
|
1029 |
+
"align_items": null,
|
1030 |
+
"align_self": null,
|
1031 |
+
"border": null,
|
1032 |
+
"bottom": null,
|
1033 |
+
"display": null,
|
1034 |
+
"flex": null,
|
1035 |
+
"flex_flow": null,
|
1036 |
+
"grid_area": null,
|
1037 |
+
"grid_auto_columns": null,
|
1038 |
+
"grid_auto_flow": null,
|
1039 |
+
"grid_auto_rows": null,
|
1040 |
+
"grid_column": null,
|
1041 |
+
"grid_gap": null,
|
1042 |
+
"grid_row": null,
|
1043 |
+
"grid_template_areas": null,
|
1044 |
+
"grid_template_columns": null,
|
1045 |
+
"grid_template_rows": null,
|
1046 |
+
"height": null,
|
1047 |
+
"justify_content": null,
|
1048 |
+
"justify_items": null,
|
1049 |
+
"left": null,
|
1050 |
+
"margin": null,
|
1051 |
+
"max_height": null,
|
1052 |
+
"max_width": null,
|
1053 |
+
"min_height": null,
|
1054 |
+
"min_width": null,
|
1055 |
+
"object_fit": null,
|
1056 |
+
"object_position": null,
|
1057 |
+
"order": null,
|
1058 |
+
"overflow": null,
|
1059 |
+
"overflow_x": null,
|
1060 |
+
"overflow_y": null,
|
1061 |
+
"padding": null,
|
1062 |
+
"right": null,
|
1063 |
+
"top": null,
|
1064 |
+
"visibility": null,
|
1065 |
+
"width": null
|
1066 |
+
}
|
1067 |
+
},
|
1068 |
+
"eecd42e03f4d484c87032c25df7570b3": {
|
1069 |
+
"model_module": "@jupyter-widgets/base",
|
1070 |
+
"model_name": "LayoutModel",
|
1071 |
+
"model_module_version": "1.2.0",
|
1072 |
+
"state": {
|
1073 |
+
"_model_module": "@jupyter-widgets/base",
|
1074 |
+
"_model_module_version": "1.2.0",
|
1075 |
+
"_model_name": "LayoutModel",
|
1076 |
+
"_view_count": null,
|
1077 |
+
"_view_module": "@jupyter-widgets/base",
|
1078 |
+
"_view_module_version": "1.2.0",
|
1079 |
+
"_view_name": "LayoutView",
|
1080 |
+
"align_content": null,
|
1081 |
+
"align_items": null,
|
1082 |
+
"align_self": null,
|
1083 |
+
"border": null,
|
1084 |
+
"bottom": null,
|
1085 |
+
"display": null,
|
1086 |
+
"flex": null,
|
1087 |
+
"flex_flow": null,
|
1088 |
+
"grid_area": null,
|
1089 |
+
"grid_auto_columns": null,
|
1090 |
+
"grid_auto_flow": null,
|
1091 |
+
"grid_auto_rows": null,
|
1092 |
+
"grid_column": null,
|
1093 |
+
"grid_gap": null,
|
1094 |
+
"grid_row": null,
|
1095 |
+
"grid_template_areas": null,
|
1096 |
+
"grid_template_columns": null,
|
1097 |
+
"grid_template_rows": null,
|
1098 |
+
"height": null,
|
1099 |
+
"justify_content": null,
|
1100 |
+
"justify_items": null,
|
1101 |
+
"left": null,
|
1102 |
+
"margin": null,
|
1103 |
+
"max_height": null,
|
1104 |
+
"max_width": null,
|
1105 |
+
"min_height": null,
|
1106 |
+
"min_width": null,
|
1107 |
+
"object_fit": null,
|
1108 |
+
"object_position": null,
|
1109 |
+
"order": null,
|
1110 |
+
"overflow": null,
|
1111 |
+
"overflow_x": null,
|
1112 |
+
"overflow_y": null,
|
1113 |
+
"padding": null,
|
1114 |
+
"right": null,
|
1115 |
+
"top": null,
|
1116 |
+
"visibility": null,
|
1117 |
+
"width": null
|
1118 |
+
}
|
1119 |
+
},
|
1120 |
+
"1956d41b8b9540c99fb9b4a4df7bbaa2": {
|
1121 |
+
"model_module": "@jupyter-widgets/controls",
|
1122 |
+
"model_name": "DescriptionStyleModel",
|
1123 |
+
"model_module_version": "1.5.0",
|
1124 |
+
"state": {
|
1125 |
+
"_model_module": "@jupyter-widgets/controls",
|
1126 |
+
"_model_module_version": "1.5.0",
|
1127 |
+
"_model_name": "DescriptionStyleModel",
|
1128 |
+
"_view_count": null,
|
1129 |
+
"_view_module": "@jupyter-widgets/base",
|
1130 |
+
"_view_module_version": "1.2.0",
|
1131 |
+
"_view_name": "StyleView",
|
1132 |
+
"description_width": ""
|
1133 |
+
}
|
1134 |
+
},
|
1135 |
+
"d800ddbadddd48ecbbaf0dd39035d275": {
|
1136 |
+
"model_module": "@jupyter-widgets/base",
|
1137 |
+
"model_name": "LayoutModel",
|
1138 |
+
"model_module_version": "1.2.0",
|
1139 |
+
"state": {
|
1140 |
+
"_model_module": "@jupyter-widgets/base",
|
1141 |
+
"_model_module_version": "1.2.0",
|
1142 |
+
"_model_name": "LayoutModel",
|
1143 |
+
"_view_count": null,
|
1144 |
+
"_view_module": "@jupyter-widgets/base",
|
1145 |
+
"_view_module_version": "1.2.0",
|
1146 |
+
"_view_name": "LayoutView",
|
1147 |
+
"align_content": null,
|
1148 |
+
"align_items": null,
|
1149 |
+
"align_self": null,
|
1150 |
+
"border": null,
|
1151 |
+
"bottom": null,
|
1152 |
+
"display": null,
|
1153 |
+
"flex": null,
|
1154 |
+
"flex_flow": null,
|
1155 |
+
"grid_area": null,
|
1156 |
+
"grid_auto_columns": null,
|
1157 |
+
"grid_auto_flow": null,
|
1158 |
+
"grid_auto_rows": null,
|
1159 |
+
"grid_column": null,
|
1160 |
+
"grid_gap": null,
|
1161 |
+
"grid_row": null,
|
1162 |
+
"grid_template_areas": null,
|
1163 |
+
"grid_template_columns": null,
|
1164 |
+
"grid_template_rows": null,
|
1165 |
+
"height": null,
|
1166 |
+
"justify_content": null,
|
1167 |
+
"justify_items": null,
|
1168 |
+
"left": null,
|
1169 |
+
"margin": null,
|
1170 |
+
"max_height": null,
|
1171 |
+
"max_width": null,
|
1172 |
+
"min_height": null,
|
1173 |
+
"min_width": null,
|
1174 |
+
"object_fit": null,
|
1175 |
+
"object_position": null,
|
1176 |
+
"order": null,
|
1177 |
+
"overflow": null,
|
1178 |
+
"overflow_x": null,
|
1179 |
+
"overflow_y": null,
|
1180 |
+
"padding": null,
|
1181 |
+
"right": null,
|
1182 |
+
"top": null,
|
1183 |
+
"visibility": null,
|
1184 |
+
"width": null
|
1185 |
+
}
|
1186 |
+
},
|
1187 |
+
"9d58bc10ef844753a17505aca55e079a": {
|
1188 |
+
"model_module": "@jupyter-widgets/controls",
|
1189 |
+
"model_name": "ProgressStyleModel",
|
1190 |
+
"model_module_version": "1.5.0",
|
1191 |
+
"state": {
|
1192 |
+
"_model_module": "@jupyter-widgets/controls",
|
1193 |
+
"_model_module_version": "1.5.0",
|
1194 |
+
"_model_name": "ProgressStyleModel",
|
1195 |
+
"_view_count": null,
|
1196 |
+
"_view_module": "@jupyter-widgets/base",
|
1197 |
+
"_view_module_version": "1.2.0",
|
1198 |
+
"_view_name": "StyleView",
|
1199 |
+
"bar_color": null,
|
1200 |
+
"description_width": ""
|
1201 |
+
}
|
1202 |
+
},
|
1203 |
+
"91ca1a302884473f8314c097c41d03fd": {
|
1204 |
+
"model_module": "@jupyter-widgets/base",
|
1205 |
+
"model_name": "LayoutModel",
|
1206 |
+
"model_module_version": "1.2.0",
|
1207 |
+
"state": {
|
1208 |
+
"_model_module": "@jupyter-widgets/base",
|
1209 |
+
"_model_module_version": "1.2.0",
|
1210 |
+
"_model_name": "LayoutModel",
|
1211 |
+
"_view_count": null,
|
1212 |
+
"_view_module": "@jupyter-widgets/base",
|
1213 |
+
"_view_module_version": "1.2.0",
|
1214 |
+
"_view_name": "LayoutView",
|
1215 |
+
"align_content": null,
|
1216 |
+
"align_items": null,
|
1217 |
+
"align_self": null,
|
1218 |
+
"border": null,
|
1219 |
+
"bottom": null,
|
1220 |
+
"display": null,
|
1221 |
+
"flex": null,
|
1222 |
+
"flex_flow": null,
|
1223 |
+
"grid_area": null,
|
1224 |
+
"grid_auto_columns": null,
|
1225 |
+
"grid_auto_flow": null,
|
1226 |
+
"grid_auto_rows": null,
|
1227 |
+
"grid_column": null,
|
1228 |
+
"grid_gap": null,
|
1229 |
+
"grid_row": null,
|
1230 |
+
"grid_template_areas": null,
|
1231 |
+
"grid_template_columns": null,
|
1232 |
+
"grid_template_rows": null,
|
1233 |
+
"height": null,
|
1234 |
+
"justify_content": null,
|
1235 |
+
"justify_items": null,
|
1236 |
+
"left": null,
|
1237 |
+
"margin": null,
|
1238 |
+
"max_height": null,
|
1239 |
+
"max_width": null,
|
1240 |
+
"min_height": null,
|
1241 |
+
"min_width": null,
|
1242 |
+
"object_fit": null,
|
1243 |
+
"object_position": null,
|
1244 |
+
"order": null,
|
1245 |
+
"overflow": null,
|
1246 |
+
"overflow_x": null,
|
1247 |
+
"overflow_y": null,
|
1248 |
+
"padding": null,
|
1249 |
+
"right": null,
|
1250 |
+
"top": null,
|
1251 |
+
"visibility": null,
|
1252 |
+
"width": null
|
1253 |
+
}
|
1254 |
+
},
|
1255 |
+
"b71c84b4ca3443d29d650bb8ea0f5458": {
|
1256 |
+
"model_module": "@jupyter-widgets/controls",
|
1257 |
+
"model_name": "DescriptionStyleModel",
|
1258 |
+
"model_module_version": "1.5.0",
|
1259 |
+
"state": {
|
1260 |
+
"_model_module": "@jupyter-widgets/controls",
|
1261 |
+
"_model_module_version": "1.5.0",
|
1262 |
+
"_model_name": "DescriptionStyleModel",
|
1263 |
+
"_view_count": null,
|
1264 |
+
"_view_module": "@jupyter-widgets/base",
|
1265 |
+
"_view_module_version": "1.2.0",
|
1266 |
+
"_view_name": "StyleView",
|
1267 |
+
"description_width": ""
|
1268 |
+
}
|
1269 |
+
}
|
1270 |
+
}
|
1271 |
+
}
|
1272 |
+
},
|
1273 |
+
"nbformat": 4,
|
1274 |
+
"nbformat_minor": 0
|
1275 |
+
}
|