Created using Colab
Browse files- notebooks/06-Evaluate_RAG.ipynb +162 -103
notebooks/06-Evaluate_RAG.ipynb
CHANGED
@@ -21,11 +21,61 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"metadata": {
|
26 |
-
"id": "QPJzr-I9XQ7l"
|
|
|
|
|
|
|
|
|
27 |
},
|
28 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"source": [
|
30 |
"!pip install -q llama-index==0.10.37 openai==1.30.1 tiktoken==0.7.0 chromadb==0.5.0 llama-index-vector-stores-chroma==0.1.7"
|
31 |
]
|
@@ -41,7 +91,7 @@
|
|
41 |
"import os\n",
|
42 |
"\n",
|
43 |
"# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
|
44 |
-
"os.environ[\"OPENAI_API_KEY\"] = \"
|
45 |
]
|
46 |
},
|
47 |
{
|
@@ -86,7 +136,7 @@
|
|
86 |
},
|
87 |
{
|
88 |
"cell_type": "code",
|
89 |
-
"execution_count":
|
90 |
"metadata": {
|
91 |
"id": "zAaGcYMJzHAN"
|
92 |
},
|
@@ -127,21 +177,21 @@
|
|
127 |
},
|
128 |
{
|
129 |
"cell_type": "code",
|
130 |
-
"execution_count":
|
131 |
"metadata": {
|
132 |
"colab": {
|
133 |
"base_uri": "https://localhost:8080/"
|
134 |
},
|
135 |
"id": "fQtpDvUzKNzI",
|
136 |
-
"outputId": "
|
137 |
},
|
138 |
"outputs": [
|
139 |
{
|
140 |
"output_type": "stream",
|
141 |
"name": "stdout",
|
142 |
"text": [
|
143 |
-
"--2024-06-
|
144 |
-
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.
|
145 |
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
146 |
"HTTP request sent, awaiting response... 200 OK\n",
|
147 |
"Length: 173646 (170K) [text/plain]\n",
|
@@ -149,7 +199,7 @@
|
|
149 |
"\n",
|
150 |
"mini-llama-articles 100%[===================>] 169.58K --.-KB/s in 0.03s \n",
|
151 |
"\n",
|
152 |
-
"2024-06-
|
153 |
"\n"
|
154 |
]
|
155 |
}
|
@@ -169,13 +219,13 @@
|
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
-
"execution_count":
|
173 |
"metadata": {
|
174 |
"colab": {
|
175 |
"base_uri": "https://localhost:8080/"
|
176 |
},
|
177 |
"id": "_WER5lt0N7c5",
|
178 |
-
"outputId": "
|
179 |
},
|
180 |
"outputs": [
|
181 |
{
|
@@ -186,7 +236,7 @@
|
|
186 |
]
|
187 |
},
|
188 |
"metadata": {},
|
189 |
-
"execution_count":
|
190 |
}
|
191 |
],
|
192 |
"source": [
|
@@ -219,7 +269,7 @@
|
|
219 |
},
|
220 |
{
|
221 |
"cell_type": "code",
|
222 |
-
"execution_count":
|
223 |
"metadata": {
|
224 |
"id": "lFvW_886dxKX"
|
225 |
},
|
@@ -242,7 +292,7 @@
|
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
-
"execution_count":
|
246 |
"metadata": {
|
247 |
"colab": {
|
248 |
"base_uri": "https://localhost:8080/"
|
@@ -278,7 +328,7 @@
|
|
278 |
},
|
279 |
{
|
280 |
"cell_type": "code",
|
281 |
-
"execution_count":
|
282 |
"metadata": {
|
283 |
"id": "STACTMUR1z9N"
|
284 |
},
|
@@ -301,38 +351,38 @@
|
|
301 |
},
|
302 |
{
|
303 |
"cell_type": "code",
|
304 |
-
"execution_count":
|
305 |
"metadata": {
|
306 |
"colab": {
|
307 |
"base_uri": "https://localhost:8080/",
|
308 |
"height": 81,
|
309 |
"referenced_widgets": [
|
310 |
-
"
|
311 |
-
"
|
312 |
-
"
|
313 |
-
"
|
314 |
-
"
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
-
"
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"
|
322 |
-
"
|
323 |
-
"
|
324 |
-
"
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"
|
332 |
]
|
333 |
},
|
334 |
"id": "CtdsIUQ81_hT",
|
335 |
-
"outputId": "
|
336 |
},
|
337 |
"outputs": [
|
338 |
{
|
@@ -344,7 +394,7 @@
|
|
344 |
"application/vnd.jupyter.widget-view+json": {
|
345 |
"version_major": 2,
|
346 |
"version_minor": 0,
|
347 |
-
"model_id": "
|
348 |
}
|
349 |
},
|
350 |
"metadata": {}
|
@@ -358,7 +408,7 @@
|
|
358 |
"application/vnd.jupyter.widget-view+json": {
|
359 |
"version_major": 2,
|
360 |
"version_minor": 0,
|
361 |
-
"model_id": "
|
362 |
}
|
363 |
},
|
364 |
"metadata": {}
|
@@ -381,7 +431,7 @@
|
|
381 |
},
|
382 |
{
|
383 |
"cell_type": "code",
|
384 |
-
"execution_count":
|
385 |
"metadata": {
|
386 |
"collapsed": true,
|
387 |
"colab": {
|
@@ -417,7 +467,7 @@
|
|
417 |
},
|
418 |
{
|
419 |
"cell_type": "code",
|
420 |
-
"execution_count":
|
421 |
"metadata": {
|
422 |
"id": "HbT3-kRO4Qpt"
|
423 |
},
|
@@ -431,7 +481,7 @@
|
|
431 |
},
|
432 |
{
|
433 |
"cell_type": "code",
|
434 |
-
"execution_count":
|
435 |
"metadata": {
|
436 |
"id": "sb61DWU84bHP"
|
437 |
},
|
@@ -442,7 +492,7 @@
|
|
442 |
},
|
443 |
{
|
444 |
"cell_type": "code",
|
445 |
-
"execution_count":
|
446 |
"metadata": {
|
447 |
"id": "G32W2LMMCmnv"
|
448 |
},
|
@@ -453,7 +503,7 @@
|
|
453 |
},
|
454 |
{
|
455 |
"cell_type": "code",
|
456 |
-
"execution_count":
|
457 |
"metadata": {
|
458 |
"colab": {
|
459 |
"base_uri": "https://localhost:8080/",
|
@@ -483,7 +533,7 @@
|
|
483 |
},
|
484 |
{
|
485 |
"cell_type": "code",
|
486 |
-
"execution_count":
|
487 |
"metadata": {
|
488 |
"colab": {
|
489 |
"base_uri": "https://localhost:8080/"
|
@@ -566,7 +616,7 @@
|
|
566 |
},
|
567 |
{
|
568 |
"cell_type": "code",
|
569 |
-
"execution_count":
|
570 |
"metadata": {
|
571 |
"colab": {
|
572 |
"base_uri": "https://localhost:8080/"
|
@@ -599,7 +649,7 @@
|
|
599 |
},
|
600 |
{
|
601 |
"cell_type": "code",
|
602 |
-
"execution_count":
|
603 |
"metadata": {
|
604 |
"id": "mNDd5i921Hww"
|
605 |
},
|
@@ -634,7 +684,7 @@
|
|
634 |
},
|
635 |
{
|
636 |
"cell_type": "code",
|
637 |
-
"execution_count":
|
638 |
"metadata": {
|
639 |
"id": "eARSzx8I1Hww"
|
640 |
},
|
@@ -664,7 +714,7 @@
|
|
664 |
},
|
665 |
{
|
666 |
"cell_type": "code",
|
667 |
-
"execution_count":
|
668 |
"metadata": {
|
669 |
"colab": {
|
670 |
"base_uri": "https://localhost:8080/"
|
@@ -727,13 +777,13 @@
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
-
"execution_count":
|
731 |
"metadata": {
|
732 |
"colab": {
|
733 |
"base_uri": "https://localhost:8080/"
|
734 |
},
|
735 |
"id": "ckjE4fcD1Hwx",
|
736 |
-
"outputId": "
|
737 |
},
|
738 |
"outputs": [
|
739 |
{
|
@@ -742,32 +792,38 @@
|
|
742 |
"text": [
|
743 |
"top_2 faithfulness_score: 1.0\n",
|
744 |
"top_2 relevancy_score: 1.0\n",
|
|
|
745 |
"top_4 faithfulness_score: 1.0\n",
|
746 |
"top_4 relevancy_score: 1.0\n",
|
|
|
747 |
"top_6 faithfulness_score: 1.0\n",
|
748 |
"top_6 relevancy_score: 1.0\n",
|
|
|
749 |
"top_8 faithfulness_score: 1.0\n",
|
750 |
"top_8 relevancy_score: 1.0\n",
|
751 |
-
"
|
752 |
-
"top_10
|
|
|
|
|
753 |
]
|
754 |
}
|
755 |
],
|
756 |
"source": [
|
757 |
-
"from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator, BatchEvalRunner\n",
|
758 |
"from llama_index.llms.openai import OpenAI\n",
|
759 |
"\n",
|
760 |
"llm_gpt4 = OpenAI(temperature=0, model=\"gpt-4o\")\n",
|
761 |
"\n",
|
762 |
"faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4)\n",
|
763 |
"relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4)\n",
|
|
|
764 |
"\n",
|
765 |
"# Run evaluation\n",
|
766 |
"queries = list(rag_eval_dataset.queries.values())\n",
|
767 |
"batch_eval_queries = queries[:20]\n",
|
768 |
"\n",
|
769 |
"runner = BatchEvalRunner(\n",
|
770 |
-
"{\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator},\n",
|
771 |
"workers=32,\n",
|
772 |
")\n",
|
773 |
"\n",
|
@@ -782,7 +838,10 @@
|
|
782 |
" print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
|
783 |
"\n",
|
784 |
" relevancy_score = sum(result.passing for result in eval_results['relevancy']) / len(eval_results['relevancy'])\n",
|
785 |
-
" print(f\"top_{i} relevancy_score: {relevancy_score}\")\n"
|
|
|
|
|
|
|
786 |
]
|
787 |
},
|
788 |
{
|
@@ -818,7 +877,7 @@
|
|
818 |
},
|
819 |
"widgets": {
|
820 |
"application/vnd.jupyter.widget-state+json": {
|
821 |
-
"
|
822 |
"model_module": "@jupyter-widgets/controls",
|
823 |
"model_name": "HBoxModel",
|
824 |
"model_module_version": "1.5.0",
|
@@ -833,14 +892,14 @@
|
|
833 |
"_view_name": "HBoxView",
|
834 |
"box_style": "",
|
835 |
"children": [
|
836 |
-
"
|
837 |
-
"
|
838 |
-
"
|
839 |
],
|
840 |
-
"layout": "
|
841 |
}
|
842 |
},
|
843 |
-
"
|
844 |
"model_module": "@jupyter-widgets/controls",
|
845 |
"model_name": "HTMLModel",
|
846 |
"model_module_version": "1.5.0",
|
@@ -855,13 +914,13 @@
|
|
855 |
"_view_name": "HTMLView",
|
856 |
"description": "",
|
857 |
"description_tooltip": null,
|
858 |
-
"layout": "
|
859 |
"placeholder": "",
|
860 |
-
"style": "
|
861 |
"value": "Parsing nodes: 100%"
|
862 |
}
|
863 |
},
|
864 |
-
"
|
865 |
"model_module": "@jupyter-widgets/controls",
|
866 |
"model_name": "FloatProgressModel",
|
867 |
"model_module_version": "1.5.0",
|
@@ -877,15 +936,15 @@
|
|
877 |
"bar_style": "success",
|
878 |
"description": "",
|
879 |
"description_tooltip": null,
|
880 |
-
"layout": "
|
881 |
"max": 14,
|
882 |
"min": 0,
|
883 |
"orientation": "horizontal",
|
884 |
-
"style": "
|
885 |
"value": 14
|
886 |
}
|
887 |
},
|
888 |
-
"
|
889 |
"model_module": "@jupyter-widgets/controls",
|
890 |
"model_name": "HTMLModel",
|
891 |
"model_module_version": "1.5.0",
|
@@ -900,13 +959,13 @@
|
|
900 |
"_view_name": "HTMLView",
|
901 |
"description": "",
|
902 |
"description_tooltip": null,
|
903 |
-
"layout": "
|
904 |
"placeholder": "",
|
905 |
-
"style": "
|
906 |
-
"value": " 14/14 [00:00<00:00,
|
907 |
}
|
908 |
},
|
909 |
-
"
|
910 |
"model_module": "@jupyter-widgets/base",
|
911 |
"model_name": "LayoutModel",
|
912 |
"model_module_version": "1.2.0",
|
@@ -958,7 +1017,7 @@
|
|
958 |
"width": null
|
959 |
}
|
960 |
},
|
961 |
-
"
|
962 |
"model_module": "@jupyter-widgets/base",
|
963 |
"model_name": "LayoutModel",
|
964 |
"model_module_version": "1.2.0",
|
@@ -1010,7 +1069,7 @@
|
|
1010 |
"width": null
|
1011 |
}
|
1012 |
},
|
1013 |
-
"
|
1014 |
"model_module": "@jupyter-widgets/controls",
|
1015 |
"model_name": "DescriptionStyleModel",
|
1016 |
"model_module_version": "1.5.0",
|
@@ -1025,7 +1084,7 @@
|
|
1025 |
"description_width": ""
|
1026 |
}
|
1027 |
},
|
1028 |
-
"
|
1029 |
"model_module": "@jupyter-widgets/base",
|
1030 |
"model_name": "LayoutModel",
|
1031 |
"model_module_version": "1.2.0",
|
@@ -1077,7 +1136,7 @@
|
|
1077 |
"width": null
|
1078 |
}
|
1079 |
},
|
1080 |
-
"
|
1081 |
"model_module": "@jupyter-widgets/controls",
|
1082 |
"model_name": "ProgressStyleModel",
|
1083 |
"model_module_version": "1.5.0",
|
@@ -1093,7 +1152,7 @@
|
|
1093 |
"description_width": ""
|
1094 |
}
|
1095 |
},
|
1096 |
-
"
|
1097 |
"model_module": "@jupyter-widgets/base",
|
1098 |
"model_name": "LayoutModel",
|
1099 |
"model_module_version": "1.2.0",
|
@@ -1145,7 +1204,7 @@
|
|
1145 |
"width": null
|
1146 |
}
|
1147 |
},
|
1148 |
-
"
|
1149 |
"model_module": "@jupyter-widgets/controls",
|
1150 |
"model_name": "DescriptionStyleModel",
|
1151 |
"model_module_version": "1.5.0",
|
@@ -1160,7 +1219,7 @@
|
|
1160 |
"description_width": ""
|
1161 |
}
|
1162 |
},
|
1163 |
-
"
|
1164 |
"model_module": "@jupyter-widgets/controls",
|
1165 |
"model_name": "HBoxModel",
|
1166 |
"model_module_version": "1.5.0",
|
@@ -1175,14 +1234,14 @@
|
|
1175 |
"_view_name": "HBoxView",
|
1176 |
"box_style": "",
|
1177 |
"children": [
|
1178 |
-
"
|
1179 |
-
"
|
1180 |
-
"
|
1181 |
],
|
1182 |
-
"layout": "
|
1183 |
}
|
1184 |
},
|
1185 |
-
"
|
1186 |
"model_module": "@jupyter-widgets/controls",
|
1187 |
"model_name": "HTMLModel",
|
1188 |
"model_module_version": "1.5.0",
|
@@ -1197,13 +1256,13 @@
|
|
1197 |
"_view_name": "HTMLView",
|
1198 |
"description": "",
|
1199 |
"description_tooltip": null,
|
1200 |
-
"layout": "
|
1201 |
"placeholder": "",
|
1202 |
-
"style": "
|
1203 |
"value": "Generating embeddings: 100%"
|
1204 |
}
|
1205 |
},
|
1206 |
-
"
|
1207 |
"model_module": "@jupyter-widgets/controls",
|
1208 |
"model_name": "FloatProgressModel",
|
1209 |
"model_module_version": "1.5.0",
|
@@ -1219,15 +1278,15 @@
|
|
1219 |
"bar_style": "success",
|
1220 |
"description": "",
|
1221 |
"description_tooltip": null,
|
1222 |
-
"layout": "
|
1223 |
"max": 108,
|
1224 |
"min": 0,
|
1225 |
"orientation": "horizontal",
|
1226 |
-
"style": "
|
1227 |
"value": 108
|
1228 |
}
|
1229 |
},
|
1230 |
-
"
|
1231 |
"model_module": "@jupyter-widgets/controls",
|
1232 |
"model_name": "HTMLModel",
|
1233 |
"model_module_version": "1.5.0",
|
@@ -1242,13 +1301,13 @@
|
|
1242 |
"_view_name": "HTMLView",
|
1243 |
"description": "",
|
1244 |
"description_tooltip": null,
|
1245 |
-
"layout": "
|
1246 |
"placeholder": "",
|
1247 |
-
"style": "
|
1248 |
-
"value": " 108/108 [00:
|
1249 |
}
|
1250 |
},
|
1251 |
-
"
|
1252 |
"model_module": "@jupyter-widgets/base",
|
1253 |
"model_name": "LayoutModel",
|
1254 |
"model_module_version": "1.2.0",
|
@@ -1300,7 +1359,7 @@
|
|
1300 |
"width": null
|
1301 |
}
|
1302 |
},
|
1303 |
-
"
|
1304 |
"model_module": "@jupyter-widgets/base",
|
1305 |
"model_name": "LayoutModel",
|
1306 |
"model_module_version": "1.2.0",
|
@@ -1352,7 +1411,7 @@
|
|
1352 |
"width": null
|
1353 |
}
|
1354 |
},
|
1355 |
-
"
|
1356 |
"model_module": "@jupyter-widgets/controls",
|
1357 |
"model_name": "DescriptionStyleModel",
|
1358 |
"model_module_version": "1.5.0",
|
@@ -1367,7 +1426,7 @@
|
|
1367 |
"description_width": ""
|
1368 |
}
|
1369 |
},
|
1370 |
-
"
|
1371 |
"model_module": "@jupyter-widgets/base",
|
1372 |
"model_name": "LayoutModel",
|
1373 |
"model_module_version": "1.2.0",
|
@@ -1419,7 +1478,7 @@
|
|
1419 |
"width": null
|
1420 |
}
|
1421 |
},
|
1422 |
-
"
|
1423 |
"model_module": "@jupyter-widgets/controls",
|
1424 |
"model_name": "ProgressStyleModel",
|
1425 |
"model_module_version": "1.5.0",
|
@@ -1435,7 +1494,7 @@
|
|
1435 |
"description_width": ""
|
1436 |
}
|
1437 |
},
|
1438 |
-
"
|
1439 |
"model_module": "@jupyter-widgets/base",
|
1440 |
"model_name": "LayoutModel",
|
1441 |
"model_module_version": "1.2.0",
|
@@ -1487,7 +1546,7 @@
|
|
1487 |
"width": null
|
1488 |
}
|
1489 |
},
|
1490 |
-
"
|
1491 |
"model_module": "@jupyter-widgets/controls",
|
1492 |
"model_name": "DescriptionStyleModel",
|
1493 |
"model_module_version": "1.5.0",
|
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 1,
|
25 |
"metadata": {
|
26 |
+
"id": "QPJzr-I9XQ7l",
|
27 |
+
"outputId": "71591538-a161-4a0a-e2c4-057bd2de6941",
|
28 |
+
"colab": {
|
29 |
+
"base_uri": "https://localhost:8080/"
|
30 |
+
}
|
31 |
},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"output_type": "stream",
|
35 |
+
"name": "stdout",
|
36 |
+
"text": [
|
37 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m320.6/320.6 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
38 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
39 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m526.8/526.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
40 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m28.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
41 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m16.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
42 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
43 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m46.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
44 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.0/92.0 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
45 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.4/62.4 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
46 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.3/41.3 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
47 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m52.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
48 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.9/59.9 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
49 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.0/107.0 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
50 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
51 |
+
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
52 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
53 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
54 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.7/283.7 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m64.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
56 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━���━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
57 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m145.0/145.0 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
58 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
59 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.6/53.6 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
60 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
61 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
62 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.8/130.8 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
63 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
64 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
65 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
66 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
68 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m55.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
70 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m42.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
71 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
72 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m20.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
73 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
74 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.2/49.2 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
75 |
+
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
|
76 |
+
]
|
77 |
+
}
|
78 |
+
],
|
79 |
"source": [
|
80 |
"!pip install -q llama-index==0.10.37 openai==1.30.1 tiktoken==0.7.0 chromadb==0.5.0 llama-index-vector-stores-chroma==0.1.7"
|
81 |
]
|
|
|
91 |
"import os\n",
|
92 |
"\n",
|
93 |
"# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
|
94 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"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\""
|
95 |
]
|
96 |
},
|
97 |
{
|
|
|
136 |
},
|
137 |
{
|
138 |
"cell_type": "code",
|
139 |
+
"execution_count": 5,
|
140 |
"metadata": {
|
141 |
"id": "zAaGcYMJzHAN"
|
142 |
},
|
|
|
177 |
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
+
"execution_count": 6,
|
181 |
"metadata": {
|
182 |
"colab": {
|
183 |
"base_uri": "https://localhost:8080/"
|
184 |
},
|
185 |
"id": "fQtpDvUzKNzI",
|
186 |
+
"outputId": "833814c6-f3f7-4812-d030-6e9d10b86566"
|
187 |
},
|
188 |
"outputs": [
|
189 |
{
|
190 |
"output_type": "stream",
|
191 |
"name": "stdout",
|
192 |
"text": [
|
193 |
+
"--2024-06-26 15:43:09-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv\n",
|
194 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
|
195 |
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
196 |
"HTTP request sent, awaiting response... 200 OK\n",
|
197 |
"Length: 173646 (170K) [text/plain]\n",
|
|
|
199 |
"\n",
|
200 |
"mini-llama-articles 100%[===================>] 169.58K --.-KB/s in 0.03s \n",
|
201 |
"\n",
|
202 |
+
"2024-06-26 15:43:09 (4.78 MB/s) - ‘mini-llama-articles.csv’ saved [173646/173646]\n",
|
203 |
"\n"
|
204 |
]
|
205 |
}
|
|
|
219 |
},
|
220 |
{
|
221 |
"cell_type": "code",
|
222 |
+
"execution_count": 7,
|
223 |
"metadata": {
|
224 |
"colab": {
|
225 |
"base_uri": "https://localhost:8080/"
|
226 |
},
|
227 |
"id": "_WER5lt0N7c5",
|
228 |
+
"outputId": "17dbc7d6-9750-4748-93b6-e21c2ec90ce1"
|
229 |
},
|
230 |
"outputs": [
|
231 |
{
|
|
|
236 |
]
|
237 |
},
|
238 |
"metadata": {},
|
239 |
+
"execution_count": 7
|
240 |
}
|
241 |
],
|
242 |
"source": [
|
|
|
269 |
},
|
270 |
{
|
271 |
"cell_type": "code",
|
272 |
+
"execution_count": 8,
|
273 |
"metadata": {
|
274 |
"id": "lFvW_886dxKX"
|
275 |
},
|
|
|
292 |
},
|
293 |
{
|
294 |
"cell_type": "code",
|
295 |
+
"execution_count": null,
|
296 |
"metadata": {
|
297 |
"colab": {
|
298 |
"base_uri": "https://localhost:8080/"
|
|
|
328 |
},
|
329 |
{
|
330 |
"cell_type": "code",
|
331 |
+
"execution_count": 9,
|
332 |
"metadata": {
|
333 |
"id": "STACTMUR1z9N"
|
334 |
},
|
|
|
351 |
},
|
352 |
{
|
353 |
"cell_type": "code",
|
354 |
+
"execution_count": 10,
|
355 |
"metadata": {
|
356 |
"colab": {
|
357 |
"base_uri": "https://localhost:8080/",
|
358 |
"height": 81,
|
359 |
"referenced_widgets": [
|
360 |
+
"28c1cd3da3e94be4865255c868033798",
|
361 |
+
"580a479c2ae34923a59b2b9afd0ea8c9",
|
362 |
+
"32dc9fae0d6441cf906d9e45de311f60",
|
363 |
+
"8d71e6ced1e349ec88e9ad2feb312065",
|
364 |
+
"3c7b98951d114e2595ca7f6c6f464687",
|
365 |
+
"1b5e20be590b45c7bb5ddc90276ae493",
|
366 |
+
"7d481cc7244448d3953a6c37aee6ed62",
|
367 |
+
"2d3b076f01a84775b8944f8944d35c63",
|
368 |
+
"ce543bc180524b7e860860b3d0a204f2",
|
369 |
+
"9e1b63ba68354443a26a946c3099303c",
|
370 |
+
"2ec6143869d14484be1935294ddd3fc0",
|
371 |
+
"2b7d77e17cd647759f904291e5840507",
|
372 |
+
"fc469c78a6384be59f89ca9d039d3c25",
|
373 |
+
"ba569b44a8e74a948fa760f52cc4a5c8",
|
374 |
+
"8cfd1d9c93b24ead898b98dd5325377c",
|
375 |
+
"afa1f77f0fe140139a01702d5296f9e8",
|
376 |
+
"938dc498e428402db86667cddeb2cf07",
|
377 |
+
"0ec063511dcb4ebf80908497a6ac7b95",
|
378 |
+
"c119965f5f354bfba8e6ecdca2dd1138",
|
379 |
+
"425b798a2f9444578d81e991779e3b2d",
|
380 |
+
"b27784dfa6144372bcc222cf59e9aa05",
|
381 |
+
"37e7cb84cedd4644a0df421dff825faf"
|
382 |
]
|
383 |
},
|
384 |
"id": "CtdsIUQ81_hT",
|
385 |
+
"outputId": "c30bf148-3b0f-4f90-f49c-e97294e81f3f"
|
386 |
},
|
387 |
"outputs": [
|
388 |
{
|
|
|
394 |
"application/vnd.jupyter.widget-view+json": {
|
395 |
"version_major": 2,
|
396 |
"version_minor": 0,
|
397 |
+
"model_id": "28c1cd3da3e94be4865255c868033798"
|
398 |
}
|
399 |
},
|
400 |
"metadata": {}
|
|
|
408 |
"application/vnd.jupyter.widget-view+json": {
|
409 |
"version_major": 2,
|
410 |
"version_minor": 0,
|
411 |
+
"model_id": "2b7d77e17cd647759f904291e5840507"
|
412 |
}
|
413 |
},
|
414 |
"metadata": {}
|
|
|
431 |
},
|
432 |
{
|
433 |
"cell_type": "code",
|
434 |
+
"execution_count": null,
|
435 |
"metadata": {
|
436 |
"collapsed": true,
|
437 |
"colab": {
|
|
|
467 |
},
|
468 |
{
|
469 |
"cell_type": "code",
|
470 |
+
"execution_count": 11,
|
471 |
"metadata": {
|
472 |
"id": "HbT3-kRO4Qpt"
|
473 |
},
|
|
|
481 |
},
|
482 |
{
|
483 |
"cell_type": "code",
|
484 |
+
"execution_count": 12,
|
485 |
"metadata": {
|
486 |
"id": "sb61DWU84bHP"
|
487 |
},
|
|
|
492 |
},
|
493 |
{
|
494 |
"cell_type": "code",
|
495 |
+
"execution_count": 13,
|
496 |
"metadata": {
|
497 |
"id": "G32W2LMMCmnv"
|
498 |
},
|
|
|
503 |
},
|
504 |
{
|
505 |
"cell_type": "code",
|
506 |
+
"execution_count": null,
|
507 |
"metadata": {
|
508 |
"colab": {
|
509 |
"base_uri": "https://localhost:8080/",
|
|
|
533 |
},
|
534 |
{
|
535 |
"cell_type": "code",
|
536 |
+
"execution_count": null,
|
537 |
"metadata": {
|
538 |
"colab": {
|
539 |
"base_uri": "https://localhost:8080/"
|
|
|
616 |
},
|
617 |
{
|
618 |
"cell_type": "code",
|
619 |
+
"execution_count": null,
|
620 |
"metadata": {
|
621 |
"colab": {
|
622 |
"base_uri": "https://localhost:8080/"
|
|
|
649 |
},
|
650 |
{
|
651 |
"cell_type": "code",
|
652 |
+
"execution_count": 14,
|
653 |
"metadata": {
|
654 |
"id": "mNDd5i921Hww"
|
655 |
},
|
|
|
684 |
},
|
685 |
{
|
686 |
"cell_type": "code",
|
687 |
+
"execution_count": null,
|
688 |
"metadata": {
|
689 |
"id": "eARSzx8I1Hww"
|
690 |
},
|
|
|
714 |
},
|
715 |
{
|
716 |
"cell_type": "code",
|
717 |
+
"execution_count": null,
|
718 |
"metadata": {
|
719 |
"colab": {
|
720 |
"base_uri": "https://localhost:8080/"
|
|
|
777 |
},
|
778 |
{
|
779 |
"cell_type": "code",
|
780 |
+
"execution_count": 16,
|
781 |
"metadata": {
|
782 |
"colab": {
|
783 |
"base_uri": "https://localhost:8080/"
|
784 |
},
|
785 |
"id": "ckjE4fcD1Hwx",
|
786 |
+
"outputId": "1123434a-180c-48a3-ec0a-f52aa4325026"
|
787 |
},
|
788 |
"outputs": [
|
789 |
{
|
|
|
792 |
"text": [
|
793 |
"top_2 faithfulness_score: 1.0\n",
|
794 |
"top_2 relevancy_score: 1.0\n",
|
795 |
+
"top_2 correctness: 0.75\n",
|
796 |
"top_4 faithfulness_score: 1.0\n",
|
797 |
"top_4 relevancy_score: 1.0\n",
|
798 |
+
"top_4 correctness: 0.85\n",
|
799 |
"top_6 faithfulness_score: 1.0\n",
|
800 |
"top_6 relevancy_score: 1.0\n",
|
801 |
+
"top_6 correctness: 0.8\n",
|
802 |
"top_8 faithfulness_score: 1.0\n",
|
803 |
"top_8 relevancy_score: 1.0\n",
|
804 |
+
"top_8 correctness: 0.85\n",
|
805 |
+
"top_10 faithfulness_score: 1.0\n",
|
806 |
+
"top_10 relevancy_score: 1.0\n",
|
807 |
+
"top_10 correctness: 0.8\n"
|
808 |
]
|
809 |
}
|
810 |
],
|
811 |
"source": [
|
812 |
+
"from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator, CorrectnessEvaluator, BatchEvalRunner\n",
|
813 |
"from llama_index.llms.openai import OpenAI\n",
|
814 |
"\n",
|
815 |
"llm_gpt4 = OpenAI(temperature=0, model=\"gpt-4o\")\n",
|
816 |
"\n",
|
817 |
"faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4)\n",
|
818 |
"relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4)\n",
|
819 |
+
"correctness_evaluator = CorrectnessEvaluator(llm=llm_gpt4)\n",
|
820 |
"\n",
|
821 |
"# Run evaluation\n",
|
822 |
"queries = list(rag_eval_dataset.queries.values())\n",
|
823 |
"batch_eval_queries = queries[:20]\n",
|
824 |
"\n",
|
825 |
"runner = BatchEvalRunner(\n",
|
826 |
+
"{\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator, \"correctness\": correctness_evaluator},\n",
|
827 |
"workers=32,\n",
|
828 |
")\n",
|
829 |
"\n",
|
|
|
838 |
" print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
|
839 |
"\n",
|
840 |
" relevancy_score = sum(result.passing for result in eval_results['relevancy']) / len(eval_results['relevancy'])\n",
|
841 |
+
" print(f\"top_{i} relevancy_score: {relevancy_score}\")\n",
|
842 |
+
"\n",
|
843 |
+
" correctness = sum(result.passing for result in eval_results['correctness']) / len(eval_results['correctness'])\n",
|
844 |
+
" print(f\"top_{i} correctness: {correctness}\")\n"
|
845 |
]
|
846 |
},
|
847 |
{
|
|
|
877 |
},
|
878 |
"widgets": {
|
879 |
"application/vnd.jupyter.widget-state+json": {
|
880 |
+
"28c1cd3da3e94be4865255c868033798": {
|
881 |
"model_module": "@jupyter-widgets/controls",
|
882 |
"model_name": "HBoxModel",
|
883 |
"model_module_version": "1.5.0",
|
|
|
892 |
"_view_name": "HBoxView",
|
893 |
"box_style": "",
|
894 |
"children": [
|
895 |
+
"IPY_MODEL_580a479c2ae34923a59b2b9afd0ea8c9",
|
896 |
+
"IPY_MODEL_32dc9fae0d6441cf906d9e45de311f60",
|
897 |
+
"IPY_MODEL_8d71e6ced1e349ec88e9ad2feb312065"
|
898 |
],
|
899 |
+
"layout": "IPY_MODEL_3c7b98951d114e2595ca7f6c6f464687"
|
900 |
}
|
901 |
},
|
902 |
+
"580a479c2ae34923a59b2b9afd0ea8c9": {
|
903 |
"model_module": "@jupyter-widgets/controls",
|
904 |
"model_name": "HTMLModel",
|
905 |
"model_module_version": "1.5.0",
|
|
|
914 |
"_view_name": "HTMLView",
|
915 |
"description": "",
|
916 |
"description_tooltip": null,
|
917 |
+
"layout": "IPY_MODEL_1b5e20be590b45c7bb5ddc90276ae493",
|
918 |
"placeholder": "",
|
919 |
+
"style": "IPY_MODEL_7d481cc7244448d3953a6c37aee6ed62",
|
920 |
"value": "Parsing nodes: 100%"
|
921 |
}
|
922 |
},
|
923 |
+
"32dc9fae0d6441cf906d9e45de311f60": {
|
924 |
"model_module": "@jupyter-widgets/controls",
|
925 |
"model_name": "FloatProgressModel",
|
926 |
"model_module_version": "1.5.0",
|
|
|
936 |
"bar_style": "success",
|
937 |
"description": "",
|
938 |
"description_tooltip": null,
|
939 |
+
"layout": "IPY_MODEL_2d3b076f01a84775b8944f8944d35c63",
|
940 |
"max": 14,
|
941 |
"min": 0,
|
942 |
"orientation": "horizontal",
|
943 |
+
"style": "IPY_MODEL_ce543bc180524b7e860860b3d0a204f2",
|
944 |
"value": 14
|
945 |
}
|
946 |
},
|
947 |
+
"8d71e6ced1e349ec88e9ad2feb312065": {
|
948 |
"model_module": "@jupyter-widgets/controls",
|
949 |
"model_name": "HTMLModel",
|
950 |
"model_module_version": "1.5.0",
|
|
|
959 |
"_view_name": "HTMLView",
|
960 |
"description": "",
|
961 |
"description_tooltip": null,
|
962 |
+
"layout": "IPY_MODEL_9e1b63ba68354443a26a946c3099303c",
|
963 |
"placeholder": "",
|
964 |
+
"style": "IPY_MODEL_2ec6143869d14484be1935294ddd3fc0",
|
965 |
+
"value": " 14/14 [00:00<00:00, 12.73it/s]"
|
966 |
}
|
967 |
},
|
968 |
+
"3c7b98951d114e2595ca7f6c6f464687": {
|
969 |
"model_module": "@jupyter-widgets/base",
|
970 |
"model_name": "LayoutModel",
|
971 |
"model_module_version": "1.2.0",
|
|
|
1017 |
"width": null
|
1018 |
}
|
1019 |
},
|
1020 |
+
"1b5e20be590b45c7bb5ddc90276ae493": {
|
1021 |
"model_module": "@jupyter-widgets/base",
|
1022 |
"model_name": "LayoutModel",
|
1023 |
"model_module_version": "1.2.0",
|
|
|
1069 |
"width": null
|
1070 |
}
|
1071 |
},
|
1072 |
+
"7d481cc7244448d3953a6c37aee6ed62": {
|
1073 |
"model_module": "@jupyter-widgets/controls",
|
1074 |
"model_name": "DescriptionStyleModel",
|
1075 |
"model_module_version": "1.5.0",
|
|
|
1084 |
"description_width": ""
|
1085 |
}
|
1086 |
},
|
1087 |
+
"2d3b076f01a84775b8944f8944d35c63": {
|
1088 |
"model_module": "@jupyter-widgets/base",
|
1089 |
"model_name": "LayoutModel",
|
1090 |
"model_module_version": "1.2.0",
|
|
|
1136 |
"width": null
|
1137 |
}
|
1138 |
},
|
1139 |
+
"ce543bc180524b7e860860b3d0a204f2": {
|
1140 |
"model_module": "@jupyter-widgets/controls",
|
1141 |
"model_name": "ProgressStyleModel",
|
1142 |
"model_module_version": "1.5.0",
|
|
|
1152 |
"description_width": ""
|
1153 |
}
|
1154 |
},
|
1155 |
+
"9e1b63ba68354443a26a946c3099303c": {
|
1156 |
"model_module": "@jupyter-widgets/base",
|
1157 |
"model_name": "LayoutModel",
|
1158 |
"model_module_version": "1.2.0",
|
|
|
1204 |
"width": null
|
1205 |
}
|
1206 |
},
|
1207 |
+
"2ec6143869d14484be1935294ddd3fc0": {
|
1208 |
"model_module": "@jupyter-widgets/controls",
|
1209 |
"model_name": "DescriptionStyleModel",
|
1210 |
"model_module_version": "1.5.0",
|
|
|
1219 |
"description_width": ""
|
1220 |
}
|
1221 |
},
|
1222 |
+
"2b7d77e17cd647759f904291e5840507": {
|
1223 |
"model_module": "@jupyter-widgets/controls",
|
1224 |
"model_name": "HBoxModel",
|
1225 |
"model_module_version": "1.5.0",
|
|
|
1234 |
"_view_name": "HBoxView",
|
1235 |
"box_style": "",
|
1236 |
"children": [
|
1237 |
+
"IPY_MODEL_fc469c78a6384be59f89ca9d039d3c25",
|
1238 |
+
"IPY_MODEL_ba569b44a8e74a948fa760f52cc4a5c8",
|
1239 |
+
"IPY_MODEL_8cfd1d9c93b24ead898b98dd5325377c"
|
1240 |
],
|
1241 |
+
"layout": "IPY_MODEL_afa1f77f0fe140139a01702d5296f9e8"
|
1242 |
}
|
1243 |
},
|
1244 |
+
"fc469c78a6384be59f89ca9d039d3c25": {
|
1245 |
"model_module": "@jupyter-widgets/controls",
|
1246 |
"model_name": "HTMLModel",
|
1247 |
"model_module_version": "1.5.0",
|
|
|
1256 |
"_view_name": "HTMLView",
|
1257 |
"description": "",
|
1258 |
"description_tooltip": null,
|
1259 |
+
"layout": "IPY_MODEL_938dc498e428402db86667cddeb2cf07",
|
1260 |
"placeholder": "",
|
1261 |
+
"style": "IPY_MODEL_0ec063511dcb4ebf80908497a6ac7b95",
|
1262 |
"value": "Generating embeddings: 100%"
|
1263 |
}
|
1264 |
},
|
1265 |
+
"ba569b44a8e74a948fa760f52cc4a5c8": {
|
1266 |
"model_module": "@jupyter-widgets/controls",
|
1267 |
"model_name": "FloatProgressModel",
|
1268 |
"model_module_version": "1.5.0",
|
|
|
1278 |
"bar_style": "success",
|
1279 |
"description": "",
|
1280 |
"description_tooltip": null,
|
1281 |
+
"layout": "IPY_MODEL_c119965f5f354bfba8e6ecdca2dd1138",
|
1282 |
"max": 108,
|
1283 |
"min": 0,
|
1284 |
"orientation": "horizontal",
|
1285 |
+
"style": "IPY_MODEL_425b798a2f9444578d81e991779e3b2d",
|
1286 |
"value": 108
|
1287 |
}
|
1288 |
},
|
1289 |
+
"8cfd1d9c93b24ead898b98dd5325377c": {
|
1290 |
"model_module": "@jupyter-widgets/controls",
|
1291 |
"model_name": "HTMLModel",
|
1292 |
"model_module_version": "1.5.0",
|
|
|
1301 |
"_view_name": "HTMLView",
|
1302 |
"description": "",
|
1303 |
"description_tooltip": null,
|
1304 |
+
"layout": "IPY_MODEL_b27784dfa6144372bcc222cf59e9aa05",
|
1305 |
"placeholder": "",
|
1306 |
+
"style": "IPY_MODEL_37e7cb84cedd4644a0df421dff825faf",
|
1307 |
+
"value": " 108/108 [00:03<00:00, 33.40it/s]"
|
1308 |
}
|
1309 |
},
|
1310 |
+
"afa1f77f0fe140139a01702d5296f9e8": {
|
1311 |
"model_module": "@jupyter-widgets/base",
|
1312 |
"model_name": "LayoutModel",
|
1313 |
"model_module_version": "1.2.0",
|
|
|
1359 |
"width": null
|
1360 |
}
|
1361 |
},
|
1362 |
+
"938dc498e428402db86667cddeb2cf07": {
|
1363 |
"model_module": "@jupyter-widgets/base",
|
1364 |
"model_name": "LayoutModel",
|
1365 |
"model_module_version": "1.2.0",
|
|
|
1411 |
"width": null
|
1412 |
}
|
1413 |
},
|
1414 |
+
"0ec063511dcb4ebf80908497a6ac7b95": {
|
1415 |
"model_module": "@jupyter-widgets/controls",
|
1416 |
"model_name": "DescriptionStyleModel",
|
1417 |
"model_module_version": "1.5.0",
|
|
|
1426 |
"description_width": ""
|
1427 |
}
|
1428 |
},
|
1429 |
+
"c119965f5f354bfba8e6ecdca2dd1138": {
|
1430 |
"model_module": "@jupyter-widgets/base",
|
1431 |
"model_name": "LayoutModel",
|
1432 |
"model_module_version": "1.2.0",
|
|
|
1478 |
"width": null
|
1479 |
}
|
1480 |
},
|
1481 |
+
"425b798a2f9444578d81e991779e3b2d": {
|
1482 |
"model_module": "@jupyter-widgets/controls",
|
1483 |
"model_name": "ProgressStyleModel",
|
1484 |
"model_module_version": "1.5.0",
|
|
|
1494 |
"description_width": ""
|
1495 |
}
|
1496 |
},
|
1497 |
+
"b27784dfa6144372bcc222cf59e9aa05": {
|
1498 |
"model_module": "@jupyter-widgets/base",
|
1499 |
"model_name": "LayoutModel",
|
1500 |
"model_module_version": "1.2.0",
|
|
|
1546 |
"width": null
|
1547 |
}
|
1548 |
},
|
1549 |
+
"37e7cb84cedd4644a0df421dff825faf": {
|
1550 |
"model_module": "@jupyter-widgets/controls",
|
1551 |
"model_name": "DescriptionStyleModel",
|
1552 |
"model_module_version": "1.5.0",
|