Omar Solano
commited on
Commit
Β·
030fa83
1
Parent(s):
7c97045
add long context caching nb
Browse files
notebooks/Long_Context_Caching_vs_RAG.ipynb
ADDED
@@ -0,0 +1,1278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/03-RAG_with_LlamaIndex.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {
|
13 |
+
"id": "v9bpz99INAc1"
|
14 |
+
},
|
15 |
+
"source": [
|
16 |
+
"# Install Packages and Setup Variables\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "BeuFJKlj9jKz",
|
27 |
+
"outputId": "6419987a-aa8c-49f8-de20-42aa9d7528c3"
|
28 |
+
},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"!pip install -q llama-index==0.10.57 llama-index-llms-gemini==0.1.11 openai==1.37.0 google-generativeai==0.7.2"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 1,
|
37 |
+
"metadata": {
|
38 |
+
"id": "CWholrWlt2OQ"
|
39 |
+
},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"import os\n",
|
43 |
+
"import time\n",
|
44 |
+
"from IPython.display import Markdown, display\n",
|
45 |
+
"\n",
|
46 |
+
"# Set the following API Keys in the Python environment. Will be used later.\n",
|
47 |
+
"# We use OpenAI for the embedding model and Gemini-1.5-flash as our LLM.\n",
|
48 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_OPENAI_KEY>\"\n",
|
49 |
+
"os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"metadata": {
|
55 |
+
"id": "f5eV5EnvNCMM"
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"# Load Dataset\n"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "markdown",
|
63 |
+
"metadata": {
|
64 |
+
"id": "q-7mRQ-mNJlm"
|
65 |
+
},
|
66 |
+
"source": [
|
67 |
+
"## Download\n"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {
|
73 |
+
"id": "3PsdOdMUNmEi"
|
74 |
+
},
|
75 |
+
"source": [
|
76 |
+
"The dataset includes a subset of the documentation from the Llama-index library.\n"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 2,
|
82 |
+
"metadata": {
|
83 |
+
"colab": {
|
84 |
+
"base_uri": "https://localhost:8080/"
|
85 |
+
},
|
86 |
+
"id": "3ImRCP7pACaI",
|
87 |
+
"outputId": "ff52cd9a-67e0-4243-9774-98288c3cf248"
|
88 |
+
},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"name": "stdout",
|
92 |
+
"output_type": "stream",
|
93 |
+
"text": [
|
94 |
+
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
|
95 |
+
" Dload Upload Total Spent Left Speed\n",
|
96 |
+
"100 570k 100 570k 0 0 3407k 0 --:--:-- --:--:-- --:--:-- 3417k\n"
|
97 |
+
]
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"source": [
|
101 |
+
"!curl -o ./llama_index_150k.jsonl https://huggingface.co/datasets/towardsai-buster/llama-index-docs/raw/main/llama_index_data_150k.jsonl"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "markdown",
|
106 |
+
"metadata": {
|
107 |
+
"id": "bZZLK_wyEc-L"
|
108 |
+
},
|
109 |
+
"source": [
|
110 |
+
"## Read File and create LlamaIndex Documents\n"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 3,
|
116 |
+
"metadata": {
|
117 |
+
"colab": {
|
118 |
+
"base_uri": "https://localhost:8080/"
|
119 |
+
},
|
120 |
+
"id": "miUqycqAEfr7",
|
121 |
+
"outputId": "6c3068a9-a9a3-465a-8f84-8d329e0cd02a"
|
122 |
+
},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"from llama_index.core import Document\n",
|
126 |
+
"import json\n",
|
127 |
+
"\n",
|
128 |
+
"\n",
|
129 |
+
"def create_docs(input_file: str) -> list[Document]:\n",
|
130 |
+
" with open(input_file, \"r\") as f:\n",
|
131 |
+
" documents = []\n",
|
132 |
+
" for line in f:\n",
|
133 |
+
" data = json.loads(line)\n",
|
134 |
+
"\n",
|
135 |
+
" documents.append(\n",
|
136 |
+
" Document(\n",
|
137 |
+
" doc_id=data[\"doc_id\"],\n",
|
138 |
+
" text=data[\"content\"],\n",
|
139 |
+
" metadata={ # type: ignore\n",
|
140 |
+
" \"url\": data[\"url\"],\n",
|
141 |
+
" \"title\": data[\"name\"],\n",
|
142 |
+
" \"tokens\": data[\"tokens\"],\n",
|
143 |
+
" \"source\": data[\"source\"],\n",
|
144 |
+
" },\n",
|
145 |
+
" excluded_llm_metadata_keys=[\n",
|
146 |
+
" \"title\",\n",
|
147 |
+
" \"tokens\",\n",
|
148 |
+
" \"source\",\n",
|
149 |
+
" ],\n",
|
150 |
+
" excluded_embed_metadata_keys=[\n",
|
151 |
+
" \"url\",\n",
|
152 |
+
" \"tokens\",\n",
|
153 |
+
" \"source\",\n",
|
154 |
+
" ],\n",
|
155 |
+
" )\n",
|
156 |
+
" )\n",
|
157 |
+
" return documents"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "markdown",
|
162 |
+
"metadata": {
|
163 |
+
"id": "f86yksB9K571"
|
164 |
+
},
|
165 |
+
"source": [
|
166 |
+
"# Generate Embedding\n"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": 7,
|
172 |
+
"metadata": {
|
173 |
+
"id": "iXrr5-tnEfm9"
|
174 |
+
},
|
175 |
+
"outputs": [
|
176 |
+
{
|
177 |
+
"name": "stdout",
|
178 |
+
"output_type": "stream",
|
179 |
+
"text": [
|
180 |
+
"Number of documents: 56\n"
|
181 |
+
]
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"from llama_index.core import Document\n",
|
186 |
+
"\n",
|
187 |
+
"# Convert the texts to Document objects so the LlamaIndex framework can process them.\n",
|
188 |
+
"documents = create_docs(\"llama_index_150k.jsonl\")\n",
|
189 |
+
"print(\"Number of documents:\", len(documents))"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 5,
|
195 |
+
"metadata": {
|
196 |
+
"colab": {
|
197 |
+
"base_uri": "https://localhost:8080/",
|
198 |
+
"height": 81,
|
199 |
+
"referenced_widgets": [
|
200 |
+
"6e893cde79734e408bb8d0b4305bedab",
|
201 |
+
"51242f18dfd14aba963ed72b008d6dd6",
|
202 |
+
"a88124e34ad24f19bdcbcd73e998168a",
|
203 |
+
"fff2627bdf20445f8507a7792a17546d",
|
204 |
+
"f5f3f69abfd149f281a2f0c3f58d3284",
|
205 |
+
"d1a558eb15cf43f8a013a91b9262eee5",
|
206 |
+
"946ebbd88b344a248564a1b2c593653e",
|
207 |
+
"4e905c17eddc44c299aabf699ec33642",
|
208 |
+
"ab738a29078d43aaa3364b3076f1eca0",
|
209 |
+
"ae615040ed1a4a47838aaa99192fd33b",
|
210 |
+
"7e3db69b3e20451f8fc88631b7915a39",
|
211 |
+
"27fd17bf0eaa49868321cf2d31a5a0a1",
|
212 |
+
"a0ba4f46f20b435cb6b811317a935b1e",
|
213 |
+
"4026c7a3aead4dc1bb0525535c885601",
|
214 |
+
"8ab7550005bf4d8f80c87716c769e2ec",
|
215 |
+
"3e0e3f06c25543e9877d30ed378edd8d",
|
216 |
+
"4a766f37197b41d7bfa496c0c6d393bf",
|
217 |
+
"a436c3949572481cbde16838298cbf93",
|
218 |
+
"ab59db85ad504297a3c56e3d63f5d474",
|
219 |
+
"2b3e4d550bce4effb83939e026ea6538",
|
220 |
+
"93e9287c92034d36a44a3855f38ef6d8",
|
221 |
+
"12380f5aab5e4c41843036e4f12883cd"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"id": "Bsa7Q-DoNWBk",
|
225 |
+
"outputId": "b6f4f826-e4cd-4745-fc99-13b91c2d4d1b"
|
226 |
+
},
|
227 |
+
"outputs": [
|
228 |
+
{
|
229 |
+
"name": "stderr",
|
230 |
+
"output_type": "stream",
|
231 |
+
"text": [
|
232 |
+
"/Users/omar/Documents/ai_repos/ai-tutor-rag-system/env/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
233 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
234 |
+
"Parsing nodes: 100%|ββββββββββ| 56/56 [00:00<00:00, 181.20it/s]\n",
|
235 |
+
"Generating embeddings: 100%|ββββββββββ| 375/375 [00:05<00:00, 74.36it/s]\n"
|
236 |
+
]
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"from llama_index.core import VectorStoreIndex\n",
|
241 |
+
"from llama_index.core.node_parser import SentenceSplitter\n",
|
242 |
+
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
|
243 |
+
"\n",
|
244 |
+
"\n",
|
245 |
+
"# Build index / generate embeddings using OpenAI embedding model\n",
|
246 |
+
"index = VectorStoreIndex.from_documents(\n",
|
247 |
+
" documents,\n",
|
248 |
+
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\"),\n",
|
249 |
+
" transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=400)],\n",
|
250 |
+
" show_progress=True,\n",
|
251 |
+
")"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "markdown",
|
256 |
+
"metadata": {
|
257 |
+
"id": "3DoUxd8KK--Q"
|
258 |
+
},
|
259 |
+
"source": [
|
260 |
+
"# Query Dataset\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 8,
|
266 |
+
"metadata": {
|
267 |
+
"id": "bUaNH97dEfh9"
|
268 |
+
},
|
269 |
+
"outputs": [
|
270 |
+
{
|
271 |
+
"name": "stderr",
|
272 |
+
"output_type": "stream",
|
273 |
+
"text": [
|
274 |
+
"I0000 00:00:1722879021.990521 1763413 check_gcp_environment_no_op.cc:29] ALTS: Platforms other than Linux and Windows are not supported\n"
|
275 |
+
]
|
276 |
+
}
|
277 |
+
],
|
278 |
+
"source": [
|
279 |
+
"# Define a query engine that is responsible for retrieving related pieces of text,\n",
|
280 |
+
"# and using a LLM to formulate the final answer.\n",
|
281 |
+
"\n",
|
282 |
+
"from llama_index.llms.gemini import Gemini\n",
|
283 |
+
"\n",
|
284 |
+
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=1000)\n",
|
285 |
+
"\n",
|
286 |
+
"query_engine = index.as_query_engine(llm=llm, similarity_top_k=10)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 9,
|
292 |
+
"metadata": {
|
293 |
+
"colab": {
|
294 |
+
"base_uri": "https://localhost:8080/"
|
295 |
+
},
|
296 |
+
"id": "KHK4V_GRR6ZG",
|
297 |
+
"outputId": "105cf2b3-3a65-4eb7-f629-38ce22bb20aa"
|
298 |
+
},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"name": "stderr",
|
302 |
+
"output_type": "stream",
|
303 |
+
"text": [
|
304 |
+
"I0000 00:00:1722879022.480648 1763413 check_gcp_environment_no_op.cc:29] ALTS: Platforms other than Linux and Windows are not supported\n"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"data": {
|
309 |
+
"text/markdown": [
|
310 |
+
"To set up a query engine in code, first create an index from your documents. Then, use the index to create a query engine. You can then query the query engine using the `query` method. \n"
|
311 |
+
],
|
312 |
+
"text/plain": [
|
313 |
+
"<IPython.core.display.Markdown object>"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
"metadata": {},
|
317 |
+
"output_type": "display_data"
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"name": "stdout",
|
321 |
+
"output_type": "stream",
|
322 |
+
"text": [
|
323 |
+
"time taken: 3.4835610389709473\n"
|
324 |
+
]
|
325 |
+
}
|
326 |
+
],
|
327 |
+
"source": [
|
328 |
+
"start = time.time()\n",
|
329 |
+
"response = query_engine.query(\"How to setup a query engine in code?\")\n",
|
330 |
+
"end = time.time()\n",
|
331 |
+
"display(Markdown(response.response))\n",
|
332 |
+
"print(\"time taken: \", end - start)"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": 10,
|
338 |
+
"metadata": {
|
339 |
+
"colab": {
|
340 |
+
"base_uri": "https://localhost:8080/"
|
341 |
+
},
|
342 |
+
"id": "S-BmyTBbNd9y",
|
343 |
+
"outputId": "662f49d2-8c19-400a-c7fd-dd0018dcd74e"
|
344 |
+
},
|
345 |
+
"outputs": [
|
346 |
+
{
|
347 |
+
"data": {
|
348 |
+
"text/markdown": [
|
349 |
+
"An agent can be set up in code by defining a set of tools and providing them to a `ReActAgent` implementation.\n"
|
350 |
+
],
|
351 |
+
"text/plain": [
|
352 |
+
"<IPython.core.display.Markdown object>"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
"metadata": {},
|
356 |
+
"output_type": "display_data"
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"name": "stdout",
|
360 |
+
"output_type": "stream",
|
361 |
+
"text": [
|
362 |
+
"time taken: 3.3619420528411865\n"
|
363 |
+
]
|
364 |
+
}
|
365 |
+
],
|
366 |
+
"source": [
|
367 |
+
"start = time.time()\n",
|
368 |
+
"response = query_engine.query(\"How to setup an agent in code?\")\n",
|
369 |
+
"end = time.time()\n",
|
370 |
+
"display(Markdown(response.response))\n",
|
371 |
+
"print(\"time taken: \", end - start)"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "markdown",
|
376 |
+
"metadata": {},
|
377 |
+
"source": [
|
378 |
+
"# Setup Long Context Caching\n"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "markdown",
|
383 |
+
"metadata": {},
|
384 |
+
"source": [
|
385 |
+
"For this section, we will be using the Gemini API\n"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 11,
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"# Import the Python SDK\n",
|
395 |
+
"import google.generativeai as genai\n",
|
396 |
+
"from google.generativeai import caching\n",
|
397 |
+
"from google.generativeai import GenerationConfig\n",
|
398 |
+
"\n",
|
399 |
+
"genai.configure(api_key=os.environ[\"GOOGLE_API_KEY\"])"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"cell_type": "markdown",
|
404 |
+
"metadata": {},
|
405 |
+
"source": [
|
406 |
+
"Convert the jsonl file to a text file for the Gemini API"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"execution_count": 12,
|
412 |
+
"metadata": {},
|
413 |
+
"outputs": [
|
414 |
+
{
|
415 |
+
"name": "stdout",
|
416 |
+
"output_type": "stream",
|
417 |
+
"text": [
|
418 |
+
"Contents saved to llama_index_contents.txt\n"
|
419 |
+
]
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"source": [
|
423 |
+
"import json\n",
|
424 |
+
"\n",
|
425 |
+
"\n",
|
426 |
+
"def create_text_file(input_file: str, output_file: str) -> None:\n",
|
427 |
+
" with open(input_file, \"r\") as f, open(output_file, \"w\") as out:\n",
|
428 |
+
" for line in f:\n",
|
429 |
+
" data = json.loads(line)\n",
|
430 |
+
" out.write(data[\"content\"] + \"\\n\\n\") # Add two newlines between documents\n",
|
431 |
+
"\n",
|
432 |
+
" print(f\"Contents saved to {output_file}\")\n",
|
433 |
+
"\n",
|
434 |
+
"\n",
|
435 |
+
"create_text_file(\"llama_index_150k.jsonl\", \"llama_index_contents.txt\")"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": null,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [],
|
443 |
+
"source": [
|
444 |
+
"document = genai.upload_file(path=\"llama_index_contents.txt\")\n",
|
445 |
+
"model_name = \"gemini-1.5-flash-001\"\n",
|
446 |
+
"\n",
|
447 |
+
"cache = genai.caching.CachedContent.create(\n",
|
448 |
+
" model=model_name,\n",
|
449 |
+
" system_instruction=\"You answer questions about the LlamaIndex framework.\",\n",
|
450 |
+
" contents=[document],\n",
|
451 |
+
")"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 14,
|
457 |
+
"metadata": {},
|
458 |
+
"outputs": [
|
459 |
+
{
|
460 |
+
"data": {
|
461 |
+
"text/markdown": [
|
462 |
+
"Here's a breakdown of how to set up a query engine in LlamaIndex, along with different methods and explanations:\n",
|
463 |
+
"\n",
|
464 |
+
"**1. The Most Common Approach: Using an Index**\n",
|
465 |
+
"\n",
|
466 |
+
" The simplest way to get a `QueryEngine` is to leverage an existing `Index` object. Each index type in LlamaIndex has an `as_query_engine()` method that creates a specialized engine for that index:\n",
|
467 |
+
"\n",
|
468 |
+
" ```python\n",
|
469 |
+
" from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
470 |
+
"\n",
|
471 |
+
" # Load your data\n",
|
472 |
+
" documents = SimpleDirectoryReader(\"data\").load_data() \n",
|
473 |
+
"\n",
|
474 |
+
" # Create a VectorStoreIndex\n",
|
475 |
+
" index = VectorStoreIndex.from_documents(documents) \n",
|
476 |
+
"\n",
|
477 |
+
" # Get a query engine\n",
|
478 |
+
" query_engine = index.as_query_engine() \n",
|
479 |
+
"\n",
|
480 |
+
" # Now you can use the query engine to ask questions\n",
|
481 |
+
" response = query_engine.query(\"What is the main point of this document?\")\n",
|
482 |
+
" print(response)\n",
|
483 |
+
" ```\n",
|
484 |
+
"\n",
|
485 |
+
"**2. Customization Through Composition: Advanced Query Engines**\n",
|
486 |
+
"\n",
|
487 |
+
" For fine-grained control, you can build a `QueryEngine` from its component parts using the `RetrieverQueryEngine`:\n",
|
488 |
+
"\n",
|
489 |
+
" ```python\n",
|
490 |
+
" from llama_index.core import VectorStoreIndex, get_response_synthesizer\n",
|
491 |
+
" from llama_index.core.retrievers import VectorIndexRetriever\n",
|
492 |
+
" from llama_index.core.query_engine import RetrieverQueryEngine\n",
|
493 |
+
" from llama_index.core.postprocessor import SimilarityPostprocessor\n",
|
494 |
+
"\n",
|
495 |
+
" # Build your index (as above)\n",
|
496 |
+
" index = VectorStoreIndex.from_documents(documents) \n",
|
497 |
+
"\n",
|
498 |
+
" # Configure the retriever\n",
|
499 |
+
" retriever = VectorIndexRetriever(\n",
|
500 |
+
" index=index,\n",
|
501 |
+
" similarity_top_k=10, \n",
|
502 |
+
" )\n",
|
503 |
+
"\n",
|
504 |
+
" # Configure the response synthesizer (the core LLM)\n",
|
505 |
+
" response_synthesizer = get_response_synthesizer()\n",
|
506 |
+
"\n",
|
507 |
+
" # Assemble the query engine\n",
|
508 |
+
" query_engine = RetrieverQueryEngine(\n",
|
509 |
+
" retriever=retriever,\n",
|
510 |
+
" response_synthesizer=response_synthesizer,\n",
|
511 |
+
" node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.7)],\n",
|
512 |
+
" )\n",
|
513 |
+
"\n",
|
514 |
+
" # Query the engine\n",
|
515 |
+
" response = query_engine.query(\"What are the key takeaways from this data?\")\n",
|
516 |
+
" print(response)\n",
|
517 |
+
" ```\n",
|
518 |
+
"\n",
|
519 |
+
"**Key Components and Customization:**\n",
|
520 |
+
"\n",
|
521 |
+
"* **Retrieval:** How your engine finds relevant information from the index (e.g., top-k semantic search, keyword matching, etc.).\n",
|
522 |
+
"* **Postprocessing:** Additional steps to refine the retrieved results (e.g., reranking, filtering based on metadata, etc.).\n",
|
523 |
+
"* **Response Synthesis:** The LLM used to generate the final response (e.g., OpenAI's GPT-3.5, a local model, etc.).\n",
|
524 |
+
"* **Prompt Engineering:** Crafting effective prompts to guide your LLM in synthesizing a meaningful answer.\n",
|
525 |
+
"\n",
|
526 |
+
"**Types of Query Engines:**\n",
|
527 |
+
"\n",
|
528 |
+
"* **RetrieverQueryEngine:** Combines a retriever and response synthesizer for standard question answering.\n",
|
529 |
+
"* **SubQuestionQueryEngine:** Decomposes a complex query into sub-queries, especially suited for multi-document analysis and compare/contrast scenarios.\n",
|
530 |
+
"* **RouterQueryEngine:** Routes a query to the most appropriate index or data source, especially helpful when you have a heterogeneous collection of information.\n",
|
531 |
+
"\n",
|
532 |
+
"**Choosing the Right Approach:**\n",
|
533 |
+
"\n",
|
534 |
+
"* For straightforward scenarios, using an index's `as_query_engine()` method is the easiest option.\n",
|
535 |
+
"* When you need finer control over retrieval, postprocessing, or the LLM used, create a `RetrieverQueryEngine` and customize its components.\n",
|
536 |
+
"\n",
|
537 |
+
"Let me know if you'd like to see a specific type of query engine setup or have more advanced use cases in mind! \n"
|
538 |
+
],
|
539 |
+
"text/plain": [
|
540 |
+
"<IPython.core.display.Markdown object>"
|
541 |
+
]
|
542 |
+
},
|
543 |
+
"metadata": {},
|
544 |
+
"output_type": "display_data"
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"name": "stdout",
|
548 |
+
"output_type": "stream",
|
549 |
+
"text": [
|
550 |
+
"time taken: 32.33650302886963\n"
|
551 |
+
]
|
552 |
+
}
|
553 |
+
],
|
554 |
+
"source": [
|
555 |
+
"model = genai.GenerativeModel.from_cached_content(cache)\n",
|
556 |
+
"start = time.time()\n",
|
557 |
+
"response = model.generate_content(\n",
|
558 |
+
" \"How to setup a query engine in code?\",\n",
|
559 |
+
" generation_config=GenerationConfig(max_output_tokens=1000),\n",
|
560 |
+
")\n",
|
561 |
+
"end = time.time()\n",
|
562 |
+
"display(Markdown(response.text))\n",
|
563 |
+
"print(\"time taken: \", end - start)"
|
564 |
+
]
|
565 |
+
}
|
566 |
+
],
|
567 |
+
"metadata": {
|
568 |
+
"colab": {
|
569 |
+
"provenance": []
|
570 |
+
},
|
571 |
+
"kernelspec": {
|
572 |
+
"display_name": "Python 3",
|
573 |
+
"name": "python3"
|
574 |
+
},
|
575 |
+
"language_info": {
|
576 |
+
"codemirror_mode": {
|
577 |
+
"name": "ipython",
|
578 |
+
"version": 3
|
579 |
+
},
|
580 |
+
"file_extension": ".py",
|
581 |
+
"mimetype": "text/x-python",
|
582 |
+
"name": "python",
|
583 |
+
"nbconvert_exporter": "python",
|
584 |
+
"pygments_lexer": "ipython3",
|
585 |
+
"version": "3.12.4"
|
586 |
+
},
|
587 |
+
"widgets": {
|
588 |
+
"application/vnd.jupyter.widget-state+json": {
|
589 |
+
"12380f5aab5e4c41843036e4f12883cd": {
|
590 |
+
"model_module": "@jupyter-widgets/controls",
|
591 |
+
"model_module_version": "1.5.0",
|
592 |
+
"model_name": "DescriptionStyleModel",
|
593 |
+
"state": {
|
594 |
+
"_model_module": "@jupyter-widgets/controls",
|
595 |
+
"_model_module_version": "1.5.0",
|
596 |
+
"_model_name": "DescriptionStyleModel",
|
597 |
+
"_view_count": null,
|
598 |
+
"_view_module": "@jupyter-widgets/base",
|
599 |
+
"_view_module_version": "1.2.0",
|
600 |
+
"_view_name": "StyleView",
|
601 |
+
"description_width": ""
|
602 |
+
}
|
603 |
+
},
|
604 |
+
"27fd17bf0eaa49868321cf2d31a5a0a1": {
|
605 |
+
"model_module": "@jupyter-widgets/controls",
|
606 |
+
"model_module_version": "1.5.0",
|
607 |
+
"model_name": "HBoxModel",
|
608 |
+
"state": {
|
609 |
+
"_dom_classes": [],
|
610 |
+
"_model_module": "@jupyter-widgets/controls",
|
611 |
+
"_model_module_version": "1.5.0",
|
612 |
+
"_model_name": "HBoxModel",
|
613 |
+
"_view_count": null,
|
614 |
+
"_view_module": "@jupyter-widgets/controls",
|
615 |
+
"_view_module_version": "1.5.0",
|
616 |
+
"_view_name": "HBoxView",
|
617 |
+
"box_style": "",
|
618 |
+
"children": [
|
619 |
+
"IPY_MODEL_a0ba4f46f20b435cb6b811317a935b1e",
|
620 |
+
"IPY_MODEL_4026c7a3aead4dc1bb0525535c885601",
|
621 |
+
"IPY_MODEL_8ab7550005bf4d8f80c87716c769e2ec"
|
622 |
+
],
|
623 |
+
"layout": "IPY_MODEL_3e0e3f06c25543e9877d30ed378edd8d"
|
624 |
+
}
|
625 |
+
},
|
626 |
+
"2b3e4d550bce4effb83939e026ea6538": {
|
627 |
+
"model_module": "@jupyter-widgets/controls",
|
628 |
+
"model_module_version": "1.5.0",
|
629 |
+
"model_name": "ProgressStyleModel",
|
630 |
+
"state": {
|
631 |
+
"_model_module": "@jupyter-widgets/controls",
|
632 |
+
"_model_module_version": "1.5.0",
|
633 |
+
"_model_name": "ProgressStyleModel",
|
634 |
+
"_view_count": null,
|
635 |
+
"_view_module": "@jupyter-widgets/base",
|
636 |
+
"_view_module_version": "1.2.0",
|
637 |
+
"_view_name": "StyleView",
|
638 |
+
"bar_color": null,
|
639 |
+
"description_width": ""
|
640 |
+
}
|
641 |
+
},
|
642 |
+
"3e0e3f06c25543e9877d30ed378edd8d": {
|
643 |
+
"model_module": "@jupyter-widgets/base",
|
644 |
+
"model_module_version": "1.2.0",
|
645 |
+
"model_name": "LayoutModel",
|
646 |
+
"state": {
|
647 |
+
"_model_module": "@jupyter-widgets/base",
|
648 |
+
"_model_module_version": "1.2.0",
|
649 |
+
"_model_name": "LayoutModel",
|
650 |
+
"_view_count": null,
|
651 |
+
"_view_module": "@jupyter-widgets/base",
|
652 |
+
"_view_module_version": "1.2.0",
|
653 |
+
"_view_name": "LayoutView",
|
654 |
+
"align_content": null,
|
655 |
+
"align_items": null,
|
656 |
+
"align_self": null,
|
657 |
+
"border": null,
|
658 |
+
"bottom": null,
|
659 |
+
"display": null,
|
660 |
+
"flex": null,
|
661 |
+
"flex_flow": null,
|
662 |
+
"grid_area": null,
|
663 |
+
"grid_auto_columns": null,
|
664 |
+
"grid_auto_flow": null,
|
665 |
+
"grid_auto_rows": null,
|
666 |
+
"grid_column": null,
|
667 |
+
"grid_gap": null,
|
668 |
+
"grid_row": null,
|
669 |
+
"grid_template_areas": null,
|
670 |
+
"grid_template_columns": null,
|
671 |
+
"grid_template_rows": null,
|
672 |
+
"height": null,
|
673 |
+
"justify_content": null,
|
674 |
+
"justify_items": null,
|
675 |
+
"left": null,
|
676 |
+
"margin": null,
|
677 |
+
"max_height": null,
|
678 |
+
"max_width": null,
|
679 |
+
"min_height": null,
|
680 |
+
"min_width": null,
|
681 |
+
"object_fit": null,
|
682 |
+
"object_position": null,
|
683 |
+
"order": null,
|
684 |
+
"overflow": null,
|
685 |
+
"overflow_x": null,
|
686 |
+
"overflow_y": null,
|
687 |
+
"padding": null,
|
688 |
+
"right": null,
|
689 |
+
"top": null,
|
690 |
+
"visibility": null,
|
691 |
+
"width": null
|
692 |
+
}
|
693 |
+
},
|
694 |
+
"4026c7a3aead4dc1bb0525535c885601": {
|
695 |
+
"model_module": "@jupyter-widgets/controls",
|
696 |
+
"model_module_version": "1.5.0",
|
697 |
+
"model_name": "FloatProgressModel",
|
698 |
+
"state": {
|
699 |
+
"_dom_classes": [],
|
700 |
+
"_model_module": "@jupyter-widgets/controls",
|
701 |
+
"_model_module_version": "1.5.0",
|
702 |
+
"_model_name": "FloatProgressModel",
|
703 |
+
"_view_count": null,
|
704 |
+
"_view_module": "@jupyter-widgets/controls",
|
705 |
+
"_view_module_version": "1.5.0",
|
706 |
+
"_view_name": "ProgressView",
|
707 |
+
"bar_style": "success",
|
708 |
+
"description": "",
|
709 |
+
"description_tooltip": null,
|
710 |
+
"layout": "IPY_MODEL_ab59db85ad504297a3c56e3d63f5d474",
|
711 |
+
"max": 56,
|
712 |
+
"min": 0,
|
713 |
+
"orientation": "horizontal",
|
714 |
+
"style": "IPY_MODEL_2b3e4d550bce4effb83939e026ea6538",
|
715 |
+
"value": 56
|
716 |
+
}
|
717 |
+
},
|
718 |
+
"4a766f37197b41d7bfa496c0c6d393bf": {
|
719 |
+
"model_module": "@jupyter-widgets/base",
|
720 |
+
"model_module_version": "1.2.0",
|
721 |
+
"model_name": "LayoutModel",
|
722 |
+
"state": {
|
723 |
+
"_model_module": "@jupyter-widgets/base",
|
724 |
+
"_model_module_version": "1.2.0",
|
725 |
+
"_model_name": "LayoutModel",
|
726 |
+
"_view_count": null,
|
727 |
+
"_view_module": "@jupyter-widgets/base",
|
728 |
+
"_view_module_version": "1.2.0",
|
729 |
+
"_view_name": "LayoutView",
|
730 |
+
"align_content": null,
|
731 |
+
"align_items": null,
|
732 |
+
"align_self": null,
|
733 |
+
"border": null,
|
734 |
+
"bottom": null,
|
735 |
+
"display": null,
|
736 |
+
"flex": null,
|
737 |
+
"flex_flow": null,
|
738 |
+
"grid_area": null,
|
739 |
+
"grid_auto_columns": null,
|
740 |
+
"grid_auto_flow": null,
|
741 |
+
"grid_auto_rows": null,
|
742 |
+
"grid_column": null,
|
743 |
+
"grid_gap": null,
|
744 |
+
"grid_row": null,
|
745 |
+
"grid_template_areas": null,
|
746 |
+
"grid_template_columns": null,
|
747 |
+
"grid_template_rows": null,
|
748 |
+
"height": null,
|
749 |
+
"justify_content": null,
|
750 |
+
"justify_items": null,
|
751 |
+
"left": null,
|
752 |
+
"margin": null,
|
753 |
+
"max_height": null,
|
754 |
+
"max_width": null,
|
755 |
+
"min_height": null,
|
756 |
+
"min_width": null,
|
757 |
+
"object_fit": null,
|
758 |
+
"object_position": null,
|
759 |
+
"order": null,
|
760 |
+
"overflow": null,
|
761 |
+
"overflow_x": null,
|
762 |
+
"overflow_y": null,
|
763 |
+
"padding": null,
|
764 |
+
"right": null,
|
765 |
+
"top": null,
|
766 |
+
"visibility": null,
|
767 |
+
"width": null
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"4e905c17eddc44c299aabf699ec33642": {
|
771 |
+
"model_module": "@jupyter-widgets/base",
|
772 |
+
"model_module_version": "1.2.0",
|
773 |
+
"model_name": "LayoutModel",
|
774 |
+
"state": {
|
775 |
+
"_model_module": "@jupyter-widgets/base",
|
776 |
+
"_model_module_version": "1.2.0",
|
777 |
+
"_model_name": "LayoutModel",
|
778 |
+
"_view_count": null,
|
779 |
+
"_view_module": "@jupyter-widgets/base",
|
780 |
+
"_view_module_version": "1.2.0",
|
781 |
+
"_view_name": "LayoutView",
|
782 |
+
"align_content": null,
|
783 |
+
"align_items": null,
|
784 |
+
"align_self": null,
|
785 |
+
"border": null,
|
786 |
+
"bottom": null,
|
787 |
+
"display": null,
|
788 |
+
"flex": null,
|
789 |
+
"flex_flow": null,
|
790 |
+
"grid_area": null,
|
791 |
+
"grid_auto_columns": null,
|
792 |
+
"grid_auto_flow": null,
|
793 |
+
"grid_auto_rows": null,
|
794 |
+
"grid_column": null,
|
795 |
+
"grid_gap": null,
|
796 |
+
"grid_row": null,
|
797 |
+
"grid_template_areas": null,
|
798 |
+
"grid_template_columns": null,
|
799 |
+
"grid_template_rows": null,
|
800 |
+
"height": null,
|
801 |
+
"justify_content": null,
|
802 |
+
"justify_items": null,
|
803 |
+
"left": null,
|
804 |
+
"margin": null,
|
805 |
+
"max_height": null,
|
806 |
+
"max_width": null,
|
807 |
+
"min_height": null,
|
808 |
+
"min_width": null,
|
809 |
+
"object_fit": null,
|
810 |
+
"object_position": null,
|
811 |
+
"order": null,
|
812 |
+
"overflow": null,
|
813 |
+
"overflow_x": null,
|
814 |
+
"overflow_y": null,
|
815 |
+
"padding": null,
|
816 |
+
"right": null,
|
817 |
+
"top": null,
|
818 |
+
"visibility": null,
|
819 |
+
"width": null
|
820 |
+
}
|
821 |
+
},
|
822 |
+
"51242f18dfd14aba963ed72b008d6dd6": {
|
823 |
+
"model_module": "@jupyter-widgets/controls",
|
824 |
+
"model_module_version": "1.5.0",
|
825 |
+
"model_name": "HTMLModel",
|
826 |
+
"state": {
|
827 |
+
"_dom_classes": [],
|
828 |
+
"_model_module": "@jupyter-widgets/controls",
|
829 |
+
"_model_module_version": "1.5.0",
|
830 |
+
"_model_name": "HTMLModel",
|
831 |
+
"_view_count": null,
|
832 |
+
"_view_module": "@jupyter-widgets/controls",
|
833 |
+
"_view_module_version": "1.5.0",
|
834 |
+
"_view_name": "HTMLView",
|
835 |
+
"description": "",
|
836 |
+
"description_tooltip": null,
|
837 |
+
"layout": "IPY_MODEL_d1a558eb15cf43f8a013a91b9262eee5",
|
838 |
+
"placeholder": "β",
|
839 |
+
"style": "IPY_MODEL_946ebbd88b344a248564a1b2c593653e",
|
840 |
+
"value": "Parsingβnodes:β100%"
|
841 |
+
}
|
842 |
+
},
|
843 |
+
"6e893cde79734e408bb8d0b4305bedab": {
|
844 |
+
"model_module": "@jupyter-widgets/controls",
|
845 |
+
"model_module_version": "1.5.0",
|
846 |
+
"model_name": "HBoxModel",
|
847 |
+
"state": {
|
848 |
+
"_dom_classes": [],
|
849 |
+
"_model_module": "@jupyter-widgets/controls",
|
850 |
+
"_model_module_version": "1.5.0",
|
851 |
+
"_model_name": "HBoxModel",
|
852 |
+
"_view_count": null,
|
853 |
+
"_view_module": "@jupyter-widgets/controls",
|
854 |
+
"_view_module_version": "1.5.0",
|
855 |
+
"_view_name": "HBoxView",
|
856 |
+
"box_style": "",
|
857 |
+
"children": [
|
858 |
+
"IPY_MODEL_51242f18dfd14aba963ed72b008d6dd6",
|
859 |
+
"IPY_MODEL_a88124e34ad24f19bdcbcd73e998168a",
|
860 |
+
"IPY_MODEL_fff2627bdf20445f8507a7792a17546d"
|
861 |
+
],
|
862 |
+
"layout": "IPY_MODEL_f5f3f69abfd149f281a2f0c3f58d3284"
|
863 |
+
}
|
864 |
+
},
|
865 |
+
"7e3db69b3e20451f8fc88631b7915a39": {
|
866 |
+
"model_module": "@jupyter-widgets/controls",
|
867 |
+
"model_module_version": "1.5.0",
|
868 |
+
"model_name": "DescriptionStyleModel",
|
869 |
+
"state": {
|
870 |
+
"_model_module": "@jupyter-widgets/controls",
|
871 |
+
"_model_module_version": "1.5.0",
|
872 |
+
"_model_name": "DescriptionStyleModel",
|
873 |
+
"_view_count": null,
|
874 |
+
"_view_module": "@jupyter-widgets/base",
|
875 |
+
"_view_module_version": "1.2.0",
|
876 |
+
"_view_name": "StyleView",
|
877 |
+
"description_width": ""
|
878 |
+
}
|
879 |
+
},
|
880 |
+
"8ab7550005bf4d8f80c87716c769e2ec": {
|
881 |
+
"model_module": "@jupyter-widgets/controls",
|
882 |
+
"model_module_version": "1.5.0",
|
883 |
+
"model_name": "HTMLModel",
|
884 |
+
"state": {
|
885 |
+
"_dom_classes": [],
|
886 |
+
"_model_module": "@jupyter-widgets/controls",
|
887 |
+
"_model_module_version": "1.5.0",
|
888 |
+
"_model_name": "HTMLModel",
|
889 |
+
"_view_count": null,
|
890 |
+
"_view_module": "@jupyter-widgets/controls",
|
891 |
+
"_view_module_version": "1.5.0",
|
892 |
+
"_view_name": "HTMLView",
|
893 |
+
"description": "",
|
894 |
+
"description_tooltip": null,
|
895 |
+
"layout": "IPY_MODEL_93e9287c92034d36a44a3855f38ef6d8",
|
896 |
+
"placeholder": "β",
|
897 |
+
"style": "IPY_MODEL_12380f5aab5e4c41843036e4f12883cd",
|
898 |
+
"value": "β56/56β[00:01<00:00,β36.56it/s]"
|
899 |
+
}
|
900 |
+
},
|
901 |
+
"93e9287c92034d36a44a3855f38ef6d8": {
|
902 |
+
"model_module": "@jupyter-widgets/base",
|
903 |
+
"model_module_version": "1.2.0",
|
904 |
+
"model_name": "LayoutModel",
|
905 |
+
"state": {
|
906 |
+
"_model_module": "@jupyter-widgets/base",
|
907 |
+
"_model_module_version": "1.2.0",
|
908 |
+
"_model_name": "LayoutModel",
|
909 |
+
"_view_count": null,
|
910 |
+
"_view_module": "@jupyter-widgets/base",
|
911 |
+
"_view_module_version": "1.2.0",
|
912 |
+
"_view_name": "LayoutView",
|
913 |
+
"align_content": null,
|
914 |
+
"align_items": null,
|
915 |
+
"align_self": null,
|
916 |
+
"border": null,
|
917 |
+
"bottom": null,
|
918 |
+
"display": null,
|
919 |
+
"flex": null,
|
920 |
+
"flex_flow": null,
|
921 |
+
"grid_area": null,
|
922 |
+
"grid_auto_columns": null,
|
923 |
+
"grid_auto_flow": null,
|
924 |
+
"grid_auto_rows": null,
|
925 |
+
"grid_column": null,
|
926 |
+
"grid_gap": null,
|
927 |
+
"grid_row": null,
|
928 |
+
"grid_template_areas": null,
|
929 |
+
"grid_template_columns": null,
|
930 |
+
"grid_template_rows": null,
|
931 |
+
"height": null,
|
932 |
+
"justify_content": null,
|
933 |
+
"justify_items": null,
|
934 |
+
"left": null,
|
935 |
+
"margin": null,
|
936 |
+
"max_height": null,
|
937 |
+
"max_width": null,
|
938 |
+
"min_height": null,
|
939 |
+
"min_width": null,
|
940 |
+
"object_fit": null,
|
941 |
+
"object_position": null,
|
942 |
+
"order": null,
|
943 |
+
"overflow": null,
|
944 |
+
"overflow_x": null,
|
945 |
+
"overflow_y": null,
|
946 |
+
"padding": null,
|
947 |
+
"right": null,
|
948 |
+
"top": null,
|
949 |
+
"visibility": null,
|
950 |
+
"width": null
|
951 |
+
}
|
952 |
+
},
|
953 |
+
"946ebbd88b344a248564a1b2c593653e": {
|
954 |
+
"model_module": "@jupyter-widgets/controls",
|
955 |
+
"model_module_version": "1.5.0",
|
956 |
+
"model_name": "DescriptionStyleModel",
|
957 |
+
"state": {
|
958 |
+
"_model_module": "@jupyter-widgets/controls",
|
959 |
+
"_model_module_version": "1.5.0",
|
960 |
+
"_model_name": "DescriptionStyleModel",
|
961 |
+
"_view_count": null,
|
962 |
+
"_view_module": "@jupyter-widgets/base",
|
963 |
+
"_view_module_version": "1.2.0",
|
964 |
+
"_view_name": "StyleView",
|
965 |
+
"description_width": ""
|
966 |
+
}
|
967 |
+
},
|
968 |
+
"a0ba4f46f20b435cb6b811317a935b1e": {
|
969 |
+
"model_module": "@jupyter-widgets/controls",
|
970 |
+
"model_module_version": "1.5.0",
|
971 |
+
"model_name": "HTMLModel",
|
972 |
+
"state": {
|
973 |
+
"_dom_classes": [],
|
974 |
+
"_model_module": "@jupyter-widgets/controls",
|
975 |
+
"_model_module_version": "1.5.0",
|
976 |
+
"_model_name": "HTMLModel",
|
977 |
+
"_view_count": null,
|
978 |
+
"_view_module": "@jupyter-widgets/controls",
|
979 |
+
"_view_module_version": "1.5.0",
|
980 |
+
"_view_name": "HTMLView",
|
981 |
+
"description": "",
|
982 |
+
"description_tooltip": null,
|
983 |
+
"layout": "IPY_MODEL_4a766f37197b41d7bfa496c0c6d393bf",
|
984 |
+
"placeholder": "β",
|
985 |
+
"style": "IPY_MODEL_a436c3949572481cbde16838298cbf93",
|
986 |
+
"value": "Generatingβembeddings:β100%"
|
987 |
+
}
|
988 |
+
},
|
989 |
+
"a436c3949572481cbde16838298cbf93": {
|
990 |
+
"model_module": "@jupyter-widgets/controls",
|
991 |
+
"model_module_version": "1.5.0",
|
992 |
+
"model_name": "DescriptionStyleModel",
|
993 |
+
"state": {
|
994 |
+
"_model_module": "@jupyter-widgets/controls",
|
995 |
+
"_model_module_version": "1.5.0",
|
996 |
+
"_model_name": "DescriptionStyleModel",
|
997 |
+
"_view_count": null,
|
998 |
+
"_view_module": "@jupyter-widgets/base",
|
999 |
+
"_view_module_version": "1.2.0",
|
1000 |
+
"_view_name": "StyleView",
|
1001 |
+
"description_width": ""
|
1002 |
+
}
|
1003 |
+
},
|
1004 |
+
"a88124e34ad24f19bdcbcd73e998168a": {
|
1005 |
+
"model_module": "@jupyter-widgets/controls",
|
1006 |
+
"model_module_version": "1.5.0",
|
1007 |
+
"model_name": "FloatProgressModel",
|
1008 |
+
"state": {
|
1009 |
+
"_dom_classes": [],
|
1010 |
+
"_model_module": "@jupyter-widgets/controls",
|
1011 |
+
"_model_module_version": "1.5.0",
|
1012 |
+
"_model_name": "FloatProgressModel",
|
1013 |
+
"_view_count": null,
|
1014 |
+
"_view_module": "@jupyter-widgets/controls",
|
1015 |
+
"_view_module_version": "1.5.0",
|
1016 |
+
"_view_name": "ProgressView",
|
1017 |
+
"bar_style": "success",
|
1018 |
+
"description": "",
|
1019 |
+
"description_tooltip": null,
|
1020 |
+
"layout": "IPY_MODEL_4e905c17eddc44c299aabf699ec33642",
|
1021 |
+
"max": 14,
|
1022 |
+
"min": 0,
|
1023 |
+
"orientation": "horizontal",
|
1024 |
+
"style": "IPY_MODEL_ab738a29078d43aaa3364b3076f1eca0",
|
1025 |
+
"value": 14
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"ab59db85ad504297a3c56e3d63f5d474": {
|
1029 |
+
"model_module": "@jupyter-widgets/base",
|
1030 |
+
"model_module_version": "1.2.0",
|
1031 |
+
"model_name": "LayoutModel",
|
1032 |
+
"state": {
|
1033 |
+
"_model_module": "@jupyter-widgets/base",
|
1034 |
+
"_model_module_version": "1.2.0",
|
1035 |
+
"_model_name": "LayoutModel",
|
1036 |
+
"_view_count": null,
|
1037 |
+
"_view_module": "@jupyter-widgets/base",
|
1038 |
+
"_view_module_version": "1.2.0",
|
1039 |
+
"_view_name": "LayoutView",
|
1040 |
+
"align_content": null,
|
1041 |
+
"align_items": null,
|
1042 |
+
"align_self": null,
|
1043 |
+
"border": null,
|
1044 |
+
"bottom": null,
|
1045 |
+
"display": null,
|
1046 |
+
"flex": null,
|
1047 |
+
"flex_flow": null,
|
1048 |
+
"grid_area": null,
|
1049 |
+
"grid_auto_columns": null,
|
1050 |
+
"grid_auto_flow": null,
|
1051 |
+
"grid_auto_rows": null,
|
1052 |
+
"grid_column": null,
|
1053 |
+
"grid_gap": null,
|
1054 |
+
"grid_row": null,
|
1055 |
+
"grid_template_areas": null,
|
1056 |
+
"grid_template_columns": null,
|
1057 |
+
"grid_template_rows": null,
|
1058 |
+
"height": null,
|
1059 |
+
"justify_content": null,
|
1060 |
+
"justify_items": null,
|
1061 |
+
"left": null,
|
1062 |
+
"margin": null,
|
1063 |
+
"max_height": null,
|
1064 |
+
"max_width": null,
|
1065 |
+
"min_height": null,
|
1066 |
+
"min_width": null,
|
1067 |
+
"object_fit": null,
|
1068 |
+
"object_position": null,
|
1069 |
+
"order": null,
|
1070 |
+
"overflow": null,
|
1071 |
+
"overflow_x": null,
|
1072 |
+
"overflow_y": null,
|
1073 |
+
"padding": null,
|
1074 |
+
"right": null,
|
1075 |
+
"top": null,
|
1076 |
+
"visibility": null,
|
1077 |
+
"width": null
|
1078 |
+
}
|
1079 |
+
},
|
1080 |
+
"ab738a29078d43aaa3364b3076f1eca0": {
|
1081 |
+
"model_module": "@jupyter-widgets/controls",
|
1082 |
+
"model_module_version": "1.5.0",
|
1083 |
+
"model_name": "ProgressStyleModel",
|
1084 |
+
"state": {
|
1085 |
+
"_model_module": "@jupyter-widgets/controls",
|
1086 |
+
"_model_module_version": "1.5.0",
|
1087 |
+
"_model_name": "ProgressStyleModel",
|
1088 |
+
"_view_count": null,
|
1089 |
+
"_view_module": "@jupyter-widgets/base",
|
1090 |
+
"_view_module_version": "1.2.0",
|
1091 |
+
"_view_name": "StyleView",
|
1092 |
+
"bar_color": null,
|
1093 |
+
"description_width": ""
|
1094 |
+
}
|
1095 |
+
},
|
1096 |
+
"ae615040ed1a4a47838aaa99192fd33b": {
|
1097 |
+
"model_module": "@jupyter-widgets/base",
|
1098 |
+
"model_module_version": "1.2.0",
|
1099 |
+
"model_name": "LayoutModel",
|
1100 |
+
"state": {
|
1101 |
+
"_model_module": "@jupyter-widgets/base",
|
1102 |
+
"_model_module_version": "1.2.0",
|
1103 |
+
"_model_name": "LayoutModel",
|
1104 |
+
"_view_count": null,
|
1105 |
+
"_view_module": "@jupyter-widgets/base",
|
1106 |
+
"_view_module_version": "1.2.0",
|
1107 |
+
"_view_name": "LayoutView",
|
1108 |
+
"align_content": null,
|
1109 |
+
"align_items": null,
|
1110 |
+
"align_self": null,
|
1111 |
+
"border": null,
|
1112 |
+
"bottom": null,
|
1113 |
+
"display": null,
|
1114 |
+
"flex": null,
|
1115 |
+
"flex_flow": null,
|
1116 |
+
"grid_area": null,
|
1117 |
+
"grid_auto_columns": null,
|
1118 |
+
"grid_auto_flow": null,
|
1119 |
+
"grid_auto_rows": null,
|
1120 |
+
"grid_column": null,
|
1121 |
+
"grid_gap": null,
|
1122 |
+
"grid_row": null,
|
1123 |
+
"grid_template_areas": null,
|
1124 |
+
"grid_template_columns": null,
|
1125 |
+
"grid_template_rows": null,
|
1126 |
+
"height": null,
|
1127 |
+
"justify_content": null,
|
1128 |
+
"justify_items": null,
|
1129 |
+
"left": null,
|
1130 |
+
"margin": null,
|
1131 |
+
"max_height": null,
|
1132 |
+
"max_width": null,
|
1133 |
+
"min_height": null,
|
1134 |
+
"min_width": null,
|
1135 |
+
"object_fit": null,
|
1136 |
+
"object_position": null,
|
1137 |
+
"order": null,
|
1138 |
+
"overflow": null,
|
1139 |
+
"overflow_x": null,
|
1140 |
+
"overflow_y": null,
|
1141 |
+
"padding": null,
|
1142 |
+
"right": null,
|
1143 |
+
"top": null,
|
1144 |
+
"visibility": null,
|
1145 |
+
"width": null
|
1146 |
+
}
|
1147 |
+
},
|
1148 |
+
"d1a558eb15cf43f8a013a91b9262eee5": {
|
1149 |
+
"model_module": "@jupyter-widgets/base",
|
1150 |
+
"model_module_version": "1.2.0",
|
1151 |
+
"model_name": "LayoutModel",
|
1152 |
+
"state": {
|
1153 |
+
"_model_module": "@jupyter-widgets/base",
|
1154 |
+
"_model_module_version": "1.2.0",
|
1155 |
+
"_model_name": "LayoutModel",
|
1156 |
+
"_view_count": null,
|
1157 |
+
"_view_module": "@jupyter-widgets/base",
|
1158 |
+
"_view_module_version": "1.2.0",
|
1159 |
+
"_view_name": "LayoutView",
|
1160 |
+
"align_content": null,
|
1161 |
+
"align_items": null,
|
1162 |
+
"align_self": null,
|
1163 |
+
"border": null,
|
1164 |
+
"bottom": null,
|
1165 |
+
"display": null,
|
1166 |
+
"flex": null,
|
1167 |
+
"flex_flow": null,
|
1168 |
+
"grid_area": null,
|
1169 |
+
"grid_auto_columns": null,
|
1170 |
+
"grid_auto_flow": null,
|
1171 |
+
"grid_auto_rows": null,
|
1172 |
+
"grid_column": null,
|
1173 |
+
"grid_gap": null,
|
1174 |
+
"grid_row": null,
|
1175 |
+
"grid_template_areas": null,
|
1176 |
+
"grid_template_columns": null,
|
1177 |
+
"grid_template_rows": null,
|
1178 |
+
"height": null,
|
1179 |
+
"justify_content": null,
|
1180 |
+
"justify_items": null,
|
1181 |
+
"left": null,
|
1182 |
+
"margin": null,
|
1183 |
+
"max_height": null,
|
1184 |
+
"max_width": null,
|
1185 |
+
"min_height": null,
|
1186 |
+
"min_width": null,
|
1187 |
+
"object_fit": null,
|
1188 |
+
"object_position": null,
|
1189 |
+
"order": null,
|
1190 |
+
"overflow": null,
|
1191 |
+
"overflow_x": null,
|
1192 |
+
"overflow_y": null,
|
1193 |
+
"padding": null,
|
1194 |
+
"right": null,
|
1195 |
+
"top": null,
|
1196 |
+
"visibility": null,
|
1197 |
+
"width": null
|
1198 |
+
}
|
1199 |
+
},
|
1200 |
+
"f5f3f69abfd149f281a2f0c3f58d3284": {
|
1201 |
+
"model_module": "@jupyter-widgets/base",
|
1202 |
+
"model_module_version": "1.2.0",
|
1203 |
+
"model_name": "LayoutModel",
|
1204 |
+
"state": {
|
1205 |
+
"_model_module": "@jupyter-widgets/base",
|
1206 |
+
"_model_module_version": "1.2.0",
|
1207 |
+
"_model_name": "LayoutModel",
|
1208 |
+
"_view_count": null,
|
1209 |
+
"_view_module": "@jupyter-widgets/base",
|
1210 |
+
"_view_module_version": "1.2.0",
|
1211 |
+
"_view_name": "LayoutView",
|
1212 |
+
"align_content": null,
|
1213 |
+
"align_items": null,
|
1214 |
+
"align_self": null,
|
1215 |
+
"border": null,
|
1216 |
+
"bottom": null,
|
1217 |
+
"display": null,
|
1218 |
+
"flex": null,
|
1219 |
+
"flex_flow": null,
|
1220 |
+
"grid_area": null,
|
1221 |
+
"grid_auto_columns": null,
|
1222 |
+
"grid_auto_flow": null,
|
1223 |
+
"grid_auto_rows": null,
|
1224 |
+
"grid_column": null,
|
1225 |
+
"grid_gap": null,
|
1226 |
+
"grid_row": null,
|
1227 |
+
"grid_template_areas": null,
|
1228 |
+
"grid_template_columns": null,
|
1229 |
+
"grid_template_rows": null,
|
1230 |
+
"height": null,
|
1231 |
+
"justify_content": null,
|
1232 |
+
"justify_items": null,
|
1233 |
+
"left": null,
|
1234 |
+
"margin": null,
|
1235 |
+
"max_height": null,
|
1236 |
+
"max_width": null,
|
1237 |
+
"min_height": null,
|
1238 |
+
"min_width": null,
|
1239 |
+
"object_fit": null,
|
1240 |
+
"object_position": null,
|
1241 |
+
"order": null,
|
1242 |
+
"overflow": null,
|
1243 |
+
"overflow_x": null,
|
1244 |
+
"overflow_y": null,
|
1245 |
+
"padding": null,
|
1246 |
+
"right": null,
|
1247 |
+
"top": null,
|
1248 |
+
"visibility": null,
|
1249 |
+
"width": null
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
"fff2627bdf20445f8507a7792a17546d": {
|
1253 |
+
"model_module": "@jupyter-widgets/controls",
|
1254 |
+
"model_module_version": "1.5.0",
|
1255 |
+
"model_name": "HTMLModel",
|
1256 |
+
"state": {
|
1257 |
+
"_dom_classes": [],
|
1258 |
+
"_model_module": "@jupyter-widgets/controls",
|
1259 |
+
"_model_module_version": "1.5.0",
|
1260 |
+
"_model_name": "HTMLModel",
|
1261 |
+
"_view_count": null,
|
1262 |
+
"_view_module": "@jupyter-widgets/controls",
|
1263 |
+
"_view_module_version": "1.5.0",
|
1264 |
+
"_view_name": "HTMLView",
|
1265 |
+
"description": "",
|
1266 |
+
"description_tooltip": null,
|
1267 |
+
"layout": "IPY_MODEL_ae615040ed1a4a47838aaa99192fd33b",
|
1268 |
+
"placeholder": "β",
|
1269 |
+
"style": "IPY_MODEL_7e3db69b3e20451f8fc88631b7915a39",
|
1270 |
+
"value": "β14/14β[00:00<00:00,β78.64it/s]"
|
1271 |
+
}
|
1272 |
+
}
|
1273 |
+
}
|
1274 |
+
}
|
1275 |
+
},
|
1276 |
+
"nbformat": 4,
|
1277 |
+
"nbformat_minor": 0
|
1278 |
+
}
|