File size: 9,361 Bytes
8798577 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 680fe32 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 8ce4dd7 5a84661 9c1e8a7 5a84661 139a897 5a84661 139a897 7cfd081 139a897 5b5d8e0 9c1e8a7 139a897 5a84661 63c89a5 5a84661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import pdb
import gradio as gr
import logfire
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.llms import MessageRole
from llama_index.core.memory import ChatSummaryMemoryBuffer
from llama_index.core.tools import RetrieverTool, ToolMetadata
from llama_index.core.vector_stores import (
FilterCondition,
FilterOperator,
MetadataFilter,
MetadataFilters,
)
from llama_index.llms.openai import OpenAI
from prompts import system_message_openai_agent
from setup import ( # custom_retriever_langchain,; custom_retriever_llama_index,; custom_retriever_openai_cookbooks,; custom_retriever_peft,; custom_retriever_transformers,; custom_retriever_trl,
AVAILABLE_SOURCES,
AVAILABLE_SOURCES_UI,
CONCURRENCY_COUNT,
custom_retriever_all_sources,
)
def update_query_engine_tools(selected_sources):
tools = []
source_mapping = {
# "Transformers Docs": (
# custom_retriever_transformers,
# "Transformers_information",
# """Useful for general questions asking about the artificial intelligence (AI) field. Employ this tool to fetch information on topics such as language models (LLMs) models such as Llama3 and theory (transformer architectures), tips on prompting, quantization, etc.""",
# ),
# "PEFT Docs": (
# custom_retriever_peft,
# "PEFT_information",
# """Useful for questions asking about efficient LLM fine-tuning. Employ this tool to fetch information on topics such as LoRA, QLoRA, etc.""",
# ),
# "TRL Docs": (
# custom_retriever_trl,
# "TRL_information",
# """Useful for questions asking about fine-tuning LLMs with reinforcement learning (RLHF). Includes information about the Supervised Fine-tuning step (SFT), Reward Modeling step (RM), and the Proximal Policy Optimization (PPO) step.""",
# ),
# "LlamaIndex Docs": (
# custom_retriever_llama_index,
# "LlamaIndex_information",
# """Useful for questions asking about retrieval augmented generation (RAG) with LLMs and embedding models. It is the documentation of a framework, includes info about fine-tuning embedding models, building chatbots, and agents with llms, using vector databases, embeddings, information retrieval with cosine similarity or bm25, etc.""",
# ),
# "OpenAI Cookbooks": (
# custom_retriever_openai_cookbooks,
# "openai_cookbooks_info",
# """Useful for questions asking about accomplishing common tasks with the OpenAI API. Returns example code and guides stored in Jupyter notebooks, including info about ChatGPT GPT actions, OpenAI Assistants API, and How to fine-tune OpenAI's GPT-4o and GPT-4o-mini models with the OpenAI API.""",
# ),
# "LangChain Docs": (
# custom_retriever_langchain,
# "langchain_info",
# """Useful for questions asking about the LangChain framework. It is the documentation of the LangChain framework, includes info about building chains, agents, and tools, using memory, prompts, callbacks, etc.""",
# ),
"All Sources": (
custom_retriever_all_sources,
"all_sources_info",
"""Useful for questions asking about information in the field of AI.""",
),
}
for source in selected_sources:
if source in source_mapping:
retriever, name, description = source_mapping[source]
tools.append(
RetrieverTool(
retriever=retriever,
metadata=ToolMetadata(
name=name,
description=description,
),
)
)
return tools
def generate_completion(
query,
history,
sources,
model,
memory,
):
with logfire.span("Running query"):
logfire.info(f"User query: {query}")
chat_list = memory.get()
if len(chat_list) != 0:
user_index = [
i for i, msg in enumerate(chat_list) if msg.role == MessageRole.USER
]
if len(user_index) > len(history):
user_index_to_remove = user_index[len(history)]
chat_list = chat_list[:user_index_to_remove]
memory.set(chat_list)
logfire.info(f"chat_history: {len(memory.get())} {memory.get()}")
logfire.info(f"gradio_history: {len(history)} {history}")
llm = OpenAI(temperature=1, model=model, max_tokens=None)
client = llm._get_client()
logfire.instrument_openai(client)
query_engine_tools = update_query_engine_tools(["All Sources"])
filter_list = []
source_mapping = {
"Transformers Docs": "transformers",
"PEFT Docs": "peft",
"TRL Docs": "trl",
"LlamaIndex Docs": "llama_index",
"LangChain Docs": "langchain",
"OpenAI Cookbooks": "openai_cookbooks",
"Towards AI Blog": "tai_blog",
}
for source in sources:
if source in source_mapping:
filter_list.append(
MetadataFilter(
key="source",
operator=FilterOperator.EQ,
value=source_mapping[source],
)
)
filters = MetadataFilters(
filters=filter_list,
condition=FilterCondition.OR,
)
query_engine_tools[0].retriever._vector_retriever._filters = filters
agent = OpenAIAgent.from_tools(
llm=llm,
memory=memory,
tools=query_engine_tools,
system_prompt=system_message_openai_agent,
)
completion = agent.stream_chat(query)
answer_str = ""
for token in completion.response_gen:
answer_str += token
yield answer_str
for answer_str in add_sources(answer_str, completion):
yield answer_str
def add_sources(answer_str, completion):
if completion is None:
yield answer_str
formatted_sources = format_sources(completion)
if formatted_sources == "":
yield answer_str
if formatted_sources != "":
answer_str += "\n\n" + formatted_sources
yield answer_str
def format_sources(completion) -> str:
if len(completion.sources) == 0:
return ""
logfire.info(f"Formatting sources: {completion.sources}")
display_source_to_ui = {
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
documents_answer_template: str = (
"📝 Here are the sources I used to answer your question:\n{documents}"
)
document_template: str = "[🔗 {source}: {title}]({url}), relevance: {score:2.2f}"
all_documents = []
for source in completion.sources: # looping over list[ToolOutput]
if isinstance(source.raw_output, Exception):
logfire.error(f"Error in source output: {source.raw_output}")
# pdb.set_trace()
continue
if not isinstance(source.raw_output, list):
logfire.warn(f"Unexpected source output type: {type(source.raw_output)}")
continue
for src in source.raw_output: # looping over list[NodeWithScore]
document = document_template.format(
title=src.metadata["title"],
score=src.score,
source=display_source_to_ui.get(
src.metadata["source"], src.metadata["source"]
),
url=src.metadata["url"],
)
all_documents.append(document)
if len(all_documents) == 0:
return ""
else:
documents = "\n".join(all_documents)
return documents_answer_template.format(documents=documents)
def save_completion(completion, history):
pass
def vote(data: gr.LikeData):
pass
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
sources = gr.CheckboxGroup(
AVAILABLE_SOURCES_UI,
label="Sources",
value=[
"Transformers Docs",
"PEFT Docs",
"TRL Docs",
"LlamaIndex Docs",
"LangChain Docs",
"OpenAI Cookbooks",
"Towards AI Blog",
# "All Sources",
],
interactive=True,
)
model = gr.Dropdown(
[
"gpt-4o-mini",
],
label="Model",
value="gpt-4o-mini",
interactive=False,
)
with gr.Blocks(
fill_height=True,
title="Towards AI 🤖",
analytics_enabled=True,
) as demo:
memory = gr.State(
lambda: ChatSummaryMemoryBuffer.from_defaults(
token_limit=120000,
)
)
chatbot = gr.Chatbot(
scale=1,
placeholder="<strong>Towards AI 🤖: A Question-Answering Bot for anything AI-related</strong><br>",
show_label=False,
likeable=True,
show_copy_button=True,
)
chatbot.like(vote, None, None)
gr.ChatInterface(
fn=generate_completion,
chatbot=chatbot,
additional_inputs=[sources, model, memory],
additional_inputs_accordion=accordion,
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)
|