File size: 27,296 Bytes
5ddcfe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import asyncio
import html
import json
import logging
import os
import pdb
import pickle
import random
import time
from typing import Dict, List, Optional, Tuple
import aiofiles
import chromadb
import logfire
import pandas as pd
from custom_retriever import CustomRetriever
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import Document, SimpleKeywordTableIndex, VectorStoreIndex
from llama_index.core.base.base_retriever import BaseRetriever
from llama_index.core.bridge.pydantic import Field, SerializeAsAny
from llama_index.core.chat_engine.types import (
AGENT_CHAT_RESPONSE_TYPE,
AgentChatResponse,
ChatResponseMode,
)
from llama_index.core.evaluation import (
AnswerRelevancyEvaluator,
BatchEvalRunner,
EmbeddingQAFinetuneDataset,
FaithfulnessEvaluator,
RelevancyEvaluator,
)
from llama_index.core.evaluation.base import EvaluationResult
from llama_index.core.evaluation.retrieval.base import (
BaseRetrievalEvaluator,
RetrievalEvalMode,
RetrievalEvalResult,
)
from llama_index.core.indices.base_retriever import BaseRetriever
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.core.retrievers import (
BaseRetriever,
KeywordTableSimpleRetriever,
VectorIndexRetriever,
)
from llama_index.core.schema import ImageNode, NodeWithScore, QueryBundle, TextNode
from llama_index.core.tools import RetrieverTool, ToolMetadata
from llama_index.core.vector_stores import (
FilterOperator,
MetadataFilter,
MetadataFilters,
)
from llama_index.embeddings.cohere import CohereEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.chroma import ChromaVectorStore
from prompts import system_message_openai_agent
from pydantic import BaseModel, Field
from tqdm.asyncio import tqdm_asyncio
# from setup import (
# AVAILABLE_SOURCES,
# AVAILABLE_SOURCES_UI,
# custom_retriever_all_sources,
# custom_retriever_langchain,
# custom_retriever_llama_index,
# custom_retriever_openai_cookbooks,
# custom_retriever_peft,
# custom_retriever_transformers,
# custom_retriever_trl,
# )
class RotatingJSONLWriter:
def __init__(
self, base_filename: str, max_size: int = 10**6, backup_count: int = 5
):
"""
Initialize the rotating JSONL writer.
Args:
base_filename (str): The base filename for the JSONL files.
max_size (int): Maximum size in bytes before rotating.
backup_count (int): Number of backup files to keep.
"""
self.base_filename = base_filename
self.max_size = max_size
self.backup_count = backup_count
self.current_file = base_filename
async def write(self, data: dict):
# Rotate if file exceeds max size
if (
os.path.exists(self.current_file)
and os.path.getsize(self.current_file) > self.max_size
):
await self.rotate_files()
async with aiofiles.open(self.current_file, "a", encoding="utf-8") as f:
await f.write(json.dumps(data, ensure_ascii=False) + "\n")
async def rotate_files(self):
# Remove the oldest backup if it exists
oldest_backup = f"{self.base_filename}.{self.backup_count}"
if os.path.exists(oldest_backup):
os.remove(oldest_backup)
# Rotate existing backups
for i in range(self.backup_count - 1, 0, -1):
src = f"{self.base_filename}.{i}"
dst = f"{self.base_filename}.{i + 1}"
if os.path.exists(src):
os.rename(src, dst)
# Rename current file to backup
os.rename(self.current_file, f"{self.base_filename}.1")
class AsyncKeywordTableSimpleRetriever(KeywordTableSimpleRetriever):
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._retrieve, query_bundle)
class SampleableEmbeddingQADataset:
def __init__(self, dataset: EmbeddingQAFinetuneDataset):
self.dataset = dataset
def sample(self, n: int) -> EmbeddingQAFinetuneDataset:
"""
Sample n queries from the dataset.
Args:
n (int): Number of queries to sample.
Returns:
EmbeddingQAFinetuneDataset: A new dataset with the sampled queries.
"""
if n > len(self.dataset.queries):
raise ValueError(
f"n ({n}) is greater than the number of queries ({len(self.dataset.queries)})"
)
sampled_query_ids = random.sample(list(self.dataset.queries.keys()), n)
sampled_queries = {qid: self.dataset.queries[qid] for qid in sampled_query_ids}
sampled_relevant_docs = {
qid: self.dataset.relevant_docs[qid] for qid in sampled_query_ids
}
# Collect all unique document IDs from the sampled relevant docs
sampled_doc_ids = set()
for doc_ids in sampled_relevant_docs.values():
sampled_doc_ids.update(doc_ids)
sampled_corpus = {
doc_id: self.dataset.corpus[doc_id] for doc_id in sampled_doc_ids
}
return EmbeddingQAFinetuneDataset(
queries=sampled_queries,
corpus=sampled_corpus,
relevant_docs=sampled_relevant_docs,
mode=self.dataset.mode,
)
def __getattr__(self, name):
return getattr(self.dataset, name)
class RetrieverEvaluator(BaseRetrievalEvaluator):
"""Retriever evaluator.
This module will evaluate a retriever using a set of metrics.
Args:
metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate
retriever: Retriever to evaluate.
node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval.
"""
retriever: BaseRetriever = Field(..., description="Retriever to evaluate")
node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field(
default=None, description="Optional post-processor"
)
async def _aget_retrieved_ids_and_texts(
self,
query: str,
mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
source: str = "",
) -> Tuple[List[str], List[str]]:
"""Get retrieved ids and texts, potentially applying a post-processor."""
try:
retrieved_nodes: list[NodeWithScore] = await self.retriever.aretrieve(query)
logfire.info(f"Retrieved {len(retrieved_nodes)} nodes for: '{query}'")
except Exception as e:
return ["00000000-0000-0000-0000-000000000000"], [str(e)]
if len(retrieved_nodes) == 0 or retrieved_nodes is None:
print(f"No nodes retrieved for {query}")
return ["00000000-0000-0000-0000-000000000000"], ["No nodes retrieved"]
if self.node_postprocessors:
for node_postprocessor in self.node_postprocessors:
retrieved_nodes = node_postprocessor.postprocess_nodes(
retrieved_nodes, query_str=query
)
return (
[node.node.node_id for node in retrieved_nodes],
[node.node.text for node in retrieved_nodes], # type: ignore
)
class OpenAIAgentRetrieverEvaluator(BaseRetrievalEvaluator):
agent: OpenAIAgent = Field(description="The OpenAI agent used for retrieval")
async def _aget_retrieved_ids_and_texts(
self,
query: str,
mode: RetrievalEvalMode = RetrievalEvalMode.TEXT,
source: str = "",
) -> Tuple[List[str], List[str]]:
self.agent.memory.reset()
try:
logfire.info(f"Executing agent with query: {query}")
response: AgentChatResponse = await self.agent.achat(query)
except Exception as e:
# await self._save_response_data_async(
# source, query, ["Error retrieving nodes"], "Error retrieving nodes"
# )
return ["00000000-0000-0000-0000-000000000000"], [str(e)]
retrieved_nodes: list[NodeWithScore] = get_nodes_with_score(response)
logfire.info(f"Retrieved {len(retrieved_nodes)} to answer: '{query}'")
retrieved_nodes = retrieved_nodes[:6] # Limit to first 6 retrieved nodes
if len(retrieved_nodes) == 0 or retrieved_nodes is None:
# await self._save_response_data_async(
# source, query, ["No retrieved nodes"], "No retrieved nodes"
# )
return ["00000000-0000-0000-0000-000000000000"], ["No nodes retrieved"]
retrieved_ids = [node.node.node_id for node in retrieved_nodes]
retrieved_texts = [node.node.text for node in retrieved_nodes] # type: ignore
# Will not save context as its too long (token wise), costly and takes too much time.
await self._save_response_data_async(
source=source, query=query, context="", response=response.response
)
return retrieved_ids, retrieved_texts
async def _save_response_data_async(self, source, query, context, response):
data = {
"source": source,
"question": query,
# "context": context,
"answer": response,
}
await rotating_writer.write(data)
def get_nodes_with_score(completion) -> list[NodeWithScore]:
retrieved_nodes = []
for source in completion.sources: # completion.sources = list[ToolOutput]
if source.is_error == True:
continue
for node in source.raw_output: # source.raw_output = list[NodeWithScore]
retrieved_nodes.append(node)
return retrieved_nodes
def setup_basic_database(db_collection, dict_file_name, keyword_retriever):
db = chromadb.PersistentClient(path=f"data/{db_collection}")
chroma_collection = db.get_or_create_collection(db_collection)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# embed_model = OpenAIEmbedding(model="text-embedding-3-large", mode="similarity")
embed_model = CohereEmbedding(
api_key=os.environ["COHERE_API_KEY"],
model_name="embed-english-v3.0",
input_type="search_query",
)
# client = embed_model._get_client()
# aclient = embed_model._get_aclient()
# logfire.instrument_openai(client)
# logfire.instrument_openai(aclient)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
show_progress=True,
)
vector_retriever = VectorIndexRetriever(
index=index,
similarity_top_k=15,
embed_model=embed_model,
)
with open(f"data/{db_collection}/{dict_file_name}", "rb") as f:
document_dict = pickle.load(f)
return CustomRetriever(vector_retriever, document_dict, keyword_retriever, "OR")
def update_query_engine_tools(selected_sources, custom_retriever_all_sources):
tools = []
source_mapping = {
# "Transformers Docs": (
# custom_retriever_transformers,
# "Transformers_information",
# """Useful for general questions asking about the artificial intelligence (AI) field. Employ this tool to fetch information on topics such as language models (LLMs) models such as Llama3 and theory (transformer architectures), tips on prompting, quantization, etc.""",
# ),
# "PEFT Docs": (
# custom_retriever_peft,
# "PEFT_information",
# """Useful for questions asking about efficient LLM fine-tuning. Employ this tool to fetch information on topics such as LoRA, QLoRA, etc.""",
# ),
# "TRL Docs": (
# custom_retriever_trl,
# "TRL_information",
# """Useful for questions asking about fine-tuning LLMs with reinforcement learning (RLHF). Includes information about the Supervised Fine-tuning step (SFT), Reward Modeling step (RM), and the Proximal Policy Optimization (PPO) step.""",
# ),
# "LlamaIndex Docs": (
# custom_retriever_llama_index,
# "LlamaIndex_information",
# """Useful for questions asking about retrieval augmented generation (RAG) with LLMs and embedding models. It is the documentation of a framework, includes info about fine-tuning embedding models, building chatbots, and agents with llms, using vector databases, embeddings, information retrieval with cosine similarity or bm25, etc.""",
# ),
# "OpenAI Cookbooks": (
# custom_retriever_openai_cookbooks,
# "openai_cookbooks_info",
# """Useful for questions asking about accomplishing common tasks with the OpenAI API. Returns example code and guides stored in Jupyter notebooks, including info about ChatGPT GPT actions, OpenAI Assistants API, and How to fine-tune OpenAI's GPT-4o and GPT-4o-mini models with the OpenAI API.""",
# ),
# "LangChain Docs": (
# custom_retriever_langchain,
# "langchain_info",
# """Useful for questions asking about the LangChain framework. It is the documentation of the LangChain framework, includes info about building chains, agents, and tools, using memory, prompts, callbacks, etc.""",
# ),
"All Sources": (
custom_retriever_all_sources,
"all_sources_info",
"""Useful for all questions, contains information about the field of AI.""",
),
}
for source in selected_sources:
if source in source_mapping:
retriever, name, description = source_mapping[source]
tools.append(
RetrieverTool(
retriever=retriever,
metadata=ToolMetadata(
name=name,
description=description,
),
)
)
return tools
def setup_agent(custom_retriever_all_sources) -> OpenAIAgent:
llm = OpenAI(
temperature=1,
# model="gpt-4o",
model="gpt-4o-mini",
max_tokens=5000,
max_retries=3,
)
client = llm._get_client()
logfire.instrument_openai(client)
aclient = llm._get_aclient()
logfire.instrument_openai(aclient)
tools_available = [
# "Transformers Docs",
# "PEFT Docs",
# "TRL Docs",
# "LlamaIndex Docs",
# "LangChain Docs",
# "OpenAI Cookbooks",
"All Sources",
]
query_engine_tools = update_query_engine_tools(
tools_available, custom_retriever_all_sources
)
agent = OpenAIAgent.from_tools(
llm=llm,
tools=query_engine_tools,
system_prompt=system_message_openai_agent,
)
return agent
async def evaluate_answers():
start_time = time.time()
# Gemini is not async here, maybe it could work with multithreading?
# llm = Gemini(model="models/gemini-1.5-flash-002", temperature=1, max_tokens=1000)
llm = OpenAI(model="gpt-4o-mini", temperature=1, max_tokens=1000)
relevancy_evaluator = AnswerRelevancyEvaluator(llm=llm)
# Load queries and response strings from JSONL file
query_response_pairs = []
with open("response_data.jsonl", "r") as f:
for line in f:
data = json.loads(line)
query_response_pairs.append(
(data["source"], data["query"], data["response"])
)
logfire.info(f"Number of queries and answers: {len(query_response_pairs)}")
semaphore = asyncio.Semaphore(90) # Adjust this value as needed
async def evaluate_query_response(source, query, response):
async with semaphore:
try:
result: EvaluationResult = await relevancy_evaluator.aevaluate(
query=query, response=response
)
return source, result
except Exception as e:
logfire.error(f"Error evaluating query for {source}: {str(e)}")
return source, None
# Use asyncio.gather to run all evaluations concurrently
results = await tqdm_asyncio.gather(
*[
evaluate_query_response(source, query, response)
for source, query, response in query_response_pairs
],
desc="Evaluating answers",
total=len(query_response_pairs),
)
# Process results
eval_results = {}
for item in results:
if isinstance(item, tuple) and len(item) == 2:
source, result = item
if result is not None:
if source not in eval_results:
eval_results[source] = []
eval_results[source].append(result)
else:
logfire.error(f"Unexpected result: {item}")
# Save results for each source
for source, results in eval_results.items():
with open(f"eval_answers_results_{source}.pkl", "wb") as f:
pickle.dump(results, f)
end_time = time.time()
logfire.info(f"Total evaluation time: {round(end_time - start_time, 3)} seconds")
return eval_results
def create_docs(input_file: str) -> List[Document]:
with open(input_file, "r") as f:
documents = []
for line in f:
data = json.loads(line)
documents.append(
Document(
doc_id=data["doc_id"],
text=data["content"],
metadata={ # type: ignore
"url": data["url"],
"title": data["name"],
"tokens": data["tokens"],
"retrieve_doc": data["retrieve_doc"],
"source": data["source"],
},
excluded_llm_metadata_keys=[
"title",
"tokens",
"retrieve_doc",
"source",
],
excluded_embed_metadata_keys=[
"url",
"tokens",
"retrieve_doc",
"source",
],
)
)
return documents
def get_sample_size(source: str, total_queries: int) -> int:
"""Determine the number of queries to sample based on the source."""
# small_datasets = {"peft": 0, "trl": 0, "openai_cookbooks": 0}
# large_datasets = {
# "transformers": 0,
# "llama_index": 0,
# "langchain": 1,
# "tai_blog": 0,
# }
small_datasets = {"peft": 49, "trl": 34, "openai_cookbooks": 170}
large_datasets = {
"transformers": 200,
"llama_index": 200,
"langchain": 200,
"tai_blog": 200,
}
# small_datasets = {"peft": 49, "trl": 34, "openai_cookbooks": 100}
# large_datasets = {
# "transformers": 100,
# "llama_index": 100,
# "langchain": 100,
# "tai_blog": 100,
# }
# small_datasets = {"peft": 18, "trl": 12, "openai_cookbooks": 14}
# large_datasets = {
# "transformers": 24,
# "llama_index": 8,
# "langchain": 6,
# "tai_blog": 18,
# }
# small_datasets = {"peft": 4, "trl": 4, "openai_cookbooks": 4}
# large_datasets = {
# "transformers": 4,
# "llama_index": 4,
# "langchain": 5,
# "tai_blog": 5,
# }
if source in small_datasets:
return small_datasets[source]
elif source in large_datasets:
return large_datasets[source]
else:
return min(100, total_queries) # Default to 100 or all queries if less than 100
async def evaluate_retriever():
start_time = time.time()
with open("data/keyword_retriever_async.pkl", "rb") as f:
keyword_retriever = pickle.load(f)
custom_retriever_all_sources: CustomRetriever = setup_basic_database(
"chroma-db-all_sources", "document_dict_all_sources.pkl", keyword_retriever
)
# agent = setup_agent(custom_retriever_all_sources)
# filters = MetadataFilters(
# filters=[
# MetadataFilter(key="source", operator=FilterOperator.EQ, value="langchain"),
# ]
# )
# custom_retriever_all_sources._vector_retriever._filters = filters
end_time = time.time()
logfire.info(
f"Time taken for setup the custom retriever: {round(end_time - start_time, 2)} seconds"
)
sources_to_evaluate = [
"transformers",
"peft",
"trl",
"llama_index",
"langchain",
"openai_cookbooks",
"tai_blog",
]
# for k in [5, 7, 9, 11, 13, 15]:
# custom_retriever_all_sources._vector_retriever._similarity_top_k = k
retriever_evaluator = RetrieverEvaluator.from_metric_names(
["mrr", "hit_rate"], retriever=custom_retriever_all_sources
)
# retriever_evaluator = OpenAIAgentRetrieverEvaluator.from_metric_names(
# metric_names=["mrr", "hit_rate"], agent=agent
# )
all_query_pairs = []
for source in sources_to_evaluate:
rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(
f"scripts/rag_eval_{source}.json"
)
sampleable_dataset = SampleableEmbeddingQADataset(rag_eval_dataset)
sample_size = get_sample_size(source, len(sampleable_dataset.queries))
sampled_dataset = sampleable_dataset.sample(n=sample_size)
query_expected_ids_pairs = sampled_dataset.query_docid_pairs
all_query_pairs.extend(
[(source, pair[0], pair[1]) for pair in query_expected_ids_pairs]
)
semaphore = asyncio.Semaphore(220) # 250 caused a couple of errors
# semaphore = asyncio.Semaphore(90) # 100 caused a couple of errors with agent
async def evaluate_query(source, query, expected_ids):
async with semaphore:
try:
result: RetrievalEvalResult = await retriever_evaluator.aevaluate(
query=query,
expected_ids=expected_ids,
mode=RetrievalEvalMode.TEXT,
source=source,
)
return source, result
except Exception as e:
logfire.error(f"Error evaluating query for {source}: {str(e)}")
return source, None
# Use asyncio.gather to run all evaluations concurrently
results = await tqdm_asyncio.gather(
*[
evaluate_query(source, query, expected_ids)
for source, query, expected_ids in all_query_pairs
],
desc="Evaluating queries",
total=len(all_query_pairs),
)
# Process results
eval_results = {source: [] for source in sources_to_evaluate}
for item in results:
if isinstance(item, tuple) and len(item) == 2:
source, result = item
if result is not None:
eval_results[source].append(result)
else:
logfire.error(f"Unexpected result: {item}")
# Save results for each source
for source, results in eval_results.items():
with open(f"eval_results_{source}.pkl", "wb") as f:
pickle.dump(results, f)
# print(display_results_retriever(source, results))
end_time = time.time()
logfire.info(f"Total evaluation time: {round(end_time - start_time, 3)} seconds")
def display_results_retriever(name, eval_results):
"""Display results from evaluate."""
metric_dicts = []
for eval_result in eval_results:
metric_dict = eval_result.metric_vals_dict
metric_dicts.append(metric_dict)
full_df = pd.DataFrame(metric_dicts)
hit_rate = full_df["hit_rate"].mean()
mrr = full_df["mrr"].mean()
metric_df = pd.DataFrame(
{"Retriever Name": [name], "Hit Rate": [hit_rate], "MRR": [mrr]}
)
return metric_df
def display_results():
sources = [
"transformers",
"peft",
"trl",
"llama_index",
"langchain",
"openai_cookbooks",
"tai_blog",
]
# retrievers_to_evaluate = [
# # "chroma-db-all_sources_400_0",
# # "chroma-db-all_sources_400_200",
# # "chroma-db-all_sources_500_0",
# # "chroma-db-all_sources_500_250",
# # "chroma-db-all_sources",
# # "chroma-db-all_sources_800_400",
# # "chroma-db-all_sources_1000_0",
# # "chroma-db-all_sources_1000_500",
# ]
# topk = [5, 7, 9, 11, 13, 15]
# for k in topk:
# for db_name in retrievers_to_evaluate:
if True:
# print("-" * 20)
# print(f"Retriever {db_name}")
for source in sources:
with open(f"eval_results_{source}.pkl", "rb") as f:
eval_results = pickle.load(f)
print(display_results_retriever(f"{source}", eval_results))
def display_results_answers():
sources = [
"transformers",
"peft",
"trl",
"llama_index",
"langchain",
"openai_cookbooks",
"tai_blog",
]
for source in sources:
with open(f"eval_answers_results_{source}.pkl", "rb") as f:
eval_results = pickle.load(f)
print(
f"Score for {source}:",
sum(result.score for result in eval_results) / len(eval_results),
)
async def main():
await evaluate_retriever()
display_results()
# await evaluate_answers()
# display_results_answers()
return
if __name__ == "__main__":
logfire.configure()
rotating_writer = RotatingJSONLWriter(
"response_data.jsonl", max_size=10**7, backup_count=5
)
start_time = time.time()
asyncio.run(main())
end_time = time.time()
logfire.info(
f"Time taken to run script: {round((end_time - start_time), 3)} seconds"
)
# # Creating the keyword index and retriever
# logfire.info("Creating nodes from documents")
# documents = create_docs("data/all_sources_data.jsonl")
# pipeline = IngestionPipeline(
# transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)]
# )
# all_nodes = pipeline.run(documents=documents, show_progress=True)
# # with open("data/all_nodes.pkl", "wb") as f:
# # pickle.dump(all_nodes, f)
# # all_nodes = pickle.load(open("data/all_nodes.pkl", "rb"))
# logfire.info(f"Number of nodes: {len(all_nodes)}")
# with open("processed_chunks.pkl", "rb") as f:
# all_nodes: list[TextNode] = pickle.load(f)
# keyword_index = SimpleKeywordTableIndex(
# nodes=all_nodes, max_keywords_per_chunk=10, show_progress=True, use_async=False
# )
# # with open("data/keyword_index.pkl", "wb") as f:
# # pickle.dump(keyword_index, f)
# # keyword_index = pickle.load(open("data/keyword_index.pkl", "rb"))
# logfire.info("Creating keyword retriever")
# keyword_retriever = AsyncKeywordTableSimpleRetriever(index=keyword_index)
# with open("data/keyword_retriever_async.pkl", "wb") as f:
# pickle.dump(keyword_retriever, f)
|