File size: 27,703 Bytes
1a51ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417e17f
1a51ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417e17f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "## Install the requirements"
      ],
      "metadata": {
        "id": "z9h3lrtQRhYv"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "AKBQrqNsjrLB",
        "outputId": "0c4fb7c8-6960-45ea-ec65-5b3849ef0337"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/56.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m52.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m226.7/226.7 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m47.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.9/72.9 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.4/76.4 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m28.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.1/211.1 kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m37.9/37.9 MB\u001b[0m \u001b[31m17.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.6/9.6 MB\u001b[0m \u001b[31m84.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.8/101.8 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.3/157.3 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.3/81.3 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.8/295.8 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.6/97.6 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m476.0/476.0 kB\u001b[0m \u001b[31m27.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Building wheel for html2text (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for tinysegmenter (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for spider-client (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for feedfinder2 (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for jieba3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for sgmllib3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
          ]
        }
      ],
      "source": [
        "pip install -q llama-index==0.10.30 openai==1.12.0 tiktoken==0.6.0 llama-index-readers-web firecrawl-py==1.2.3"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "### SET THE ENVIRONMENT VARIABLES"
      ],
      "metadata": {
        "id": "TKh_dKV6Rm9a"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"OPENAI_API_KEY\"\n",
        "FIRECRAWL_API_KEY = \"FIRECRAWL_API_KEY\""
      ],
      "metadata": {
        "id": "QZgBdtZRJfze"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# SCRAPE WITH FIRECRAWL"
      ],
      "metadata": {
        "id": "tiBy7Q74Vkt_"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## IMPORT THE FIRECRAWL WEBREADER\n",
        "\n",
        "Firecrawl allows you to turn entire websites into LLM-ready markdown\n",
        "\n",
        "Get the API key here\n",
        "https://www.firecrawl.dev/app/api-keys"
      ],
      "metadata": {
        "id": "GQP8VA_gRr2g"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.readers.web import FireCrawlWebReader"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YuLILEoNj2lG",
        "outputId": "293ad6c5-4859-46bb-e25a-b588c014867a"
      },
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt_tab to\n",
            "[nltk_data]     /usr/local/lib/python3.10/dist-\n",
            "[nltk_data]     packages/llama_index/core/_static/nltk_cache...\n",
            "[nltk_data]   Unzipping tokenizers/punkt_tab.zip.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "# using firecrawl to crawl a website\n",
        "firecrawl_reader = FireCrawlWebReader(\n",
        "    api_key=FIRECRAWL_API_KEY,  # Replace with your actual API key from https://www.firecrawl.dev/\n",
        "    mode=\"scrape\",\n",
        ")\n",
        "\n",
        "# Load documents from a single page URL\n",
        "documents = firecrawl_reader.load_data(url=\"https://towardsai.net/\")"
      ],
      "metadata": {
        "id": "x-ls9L0QWC3S"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "index = VectorStoreIndex.from_documents(documents)\n",
        "query_engine = index.as_query_engine()"
      ],
      "metadata": {
        "id": "zL1BOBWhWrfe"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "res = query_engine.query(\"What is towards AI aim?\")\n",
        "\n",
        "print(res.response)\n",
        "\n",
        "print(\"-----------------\")\n",
        "# Show the retrieved nodes\n",
        "for src in res.source_nodes:\n",
        "  print(\"Node ID\\t\", src.node_id)\n",
        "  print(\"Title\\t\", src.metadata['title'])\n",
        "  print(\"URL\\t\", src.metadata['sourceURL'])\n",
        "  print(\"Score\\t\", src.score)\n",
        "  print(\"Description\\t\", src.metadata.get(\"description\"))\n",
        "  print(\"-_\"*20)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "AV4Fg-haWspw",
        "outputId": "04642e46-1f4f-4e89-972a-326cca793f34"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Towards AI aims to make AI and machine learning accessible to all by providing courses, blogs, tutorials, books, newsletters, and a community platform.\n",
            "-----------------\n",
            "Node ID\t fd7ec7d6-aaf7-4350-b1fd-7bb9f256abf1\n",
            "Title\t Towards AI\n",
            "URL\t https://towardsai.net/\n",
            "Score\t 0.8927276434780216\n",
            "Description\t Towards AI is an online publication, which focuses on sharing high-quality publications, news, articles, and stories on AI and technology related topics.\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t e8b70bef-9f08-45e9-bb0b-c6177f711740\n",
            "Title\t Towards AI\n",
            "URL\t https://towardsai.net/\n",
            "Score\t 0.8873490308374337\n",
            "Description\t Towards AI is an online publication, which focuses on sharing high-quality publications, news, articles, and stories on AI and technology related topics.\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# CRAWL A WEBSITE"
      ],
      "metadata": {
        "id": "lRjJrc7VVaNX"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Load The CSV\n",
        "\n",
        "CSV contains the list of tools and url of the page which we use to get information about the tool."
      ],
      "metadata": {
        "id": "Uj6dqla8SEwd"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import requests\n",
        "import csv\n",
        "\n",
        "# Google Sheets file URL (CSV export link)\n",
        "url = 'https://docs.google.com/spreadsheets/d/1gHB-aQJGt9Nl3cyOP2GorAkBI_Us2AqkYnfqrmejStc/export?format=csv'\n",
        "\n",
        "# Send a GET request to fetch the CSV file\n",
        "response = requests.get(url)\n",
        "\n",
        "response_list = []\n",
        "# Check if the request was successful\n",
        "if response.status_code == 200:\n",
        "    # Decode the content to a string\n",
        "    content = response.content.decode('utf-8')\n",
        "\n",
        "    # Use the csv.DictReader to read the content as a dictionary\n",
        "    csv_reader = csv.DictReader(content.splitlines(), delimiter=',')\n",
        "    response_list = [row for row in csv_reader]\n",
        "else:\n",
        "    print(f\"Failed to retrieve the file: {response.status_code}\")\n"
      ],
      "metadata": {
        "id": "aWTgax6zZpLx"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "website_list = response_list[3:5] # crawling 2 website for demo"
      ],
      "metadata": {
        "id": "atFrRz4MgmaR"
      },
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pprint\n",
        "print(\"CSV data\")\n",
        "pprint.pprint(website_list)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "OHWjBFSQMWZk",
        "outputId": "f589564e-5cc3-4031-8481-55b3843d9380"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "CSV data\n",
            "[{'': '',\n",
            "  'Category': 'Database',\n",
            "  'Description': 'Persistent key-value store for fast storage environments',\n",
            "  'Is a direct URL company /tool website?': 'Yes',\n",
            "  'Name': 'RocksDB',\n",
            "  'Tool Type': 'Database',\n",
            "  'URL': 'https://rocksdb.org/'},\n",
            " {'': '',\n",
            "  'Category': 'Database',\n",
            "  'Description': 'Document-oriented NoSQL database',\n",
            "  'Is a direct URL company /tool website?': 'Yes',\n",
            "  'Name': 'MongoDB',\n",
            "  'Tool Type': 'Database',\n",
            "  'URL': 'https://www.mongodb.com/lp/cloud/atlas/try4?utm_source=google&utm_campaign=search_gs_pl_evergreen_atlas_core_prosp-brand_gic-null_apac-ph_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=12212624359&adgroup=115749710543&cq_cmp=12212624359&gad_source=1&gclid=CjwKCAjw5Ky1BhAgEiwA5jGujmI0-QgV5DXTwtMUH6mJur8nIVAxkMMSoNHvp_519fBdvutBriWLHxoCe8AQAvD_BwE'}]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Initialize the Firecrawl"
      ],
      "metadata": {
        "id": "S1SO6txzTBT_"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "from firecrawl import FirecrawlApp\n",
        "app = FirecrawlApp(api_key=FIRECRAWL_API_KEY)"
      ],
      "metadata": {
        "id": "o8GphTUy7IS_"
      },
      "execution_count": 13,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import time\n",
        "\n",
        "# Crawl websites and handle responses\n",
        "url_response = {}\n",
        "crawl_per_min = 1  # Max crawl per minute\n",
        "\n",
        "# Track crawls\n",
        "crawled_websites = 0\n",
        "scraped_pages = 0\n",
        "\n",
        "for i, website_dict in enumerate(website_list):\n",
        "    url = website_dict.get('URL')\n",
        "    print(f\"Crawling: {url}\")\n",
        "\n",
        "    try:\n",
        "        response = app.crawl_url(\n",
        "            url,\n",
        "            params={\n",
        "                'limit': 10,  # Limit pages to scrape per site.\n",
        "                'scrapeOptions': {'formats': ['markdown', 'html']}\n",
        "            }\n",
        "        )\n",
        "        crawled_websites += 1\n",
        "\n",
        "    except Exception as exc:\n",
        "        print(f\"Failed to fetch {url} -> {exc}\")\n",
        "        continue\n",
        "\n",
        "    # Store the scraped data and associated info in the response dict\n",
        "    url_response[url] = {\n",
        "        \"scraped_data\": response.get(\"data\"),\n",
        "        \"csv_data\": website_dict\n",
        "    }\n",
        "\n",
        "    # Pause to comply with crawl per minute limit for free version its 1 crawl per minute\n",
        "    if i!=len(website_list) and (i + 1) % crawl_per_min == 0:\n",
        "        print(\"Pausing for 1 minute to comply with crawl limit...\")\n",
        "        time.sleep(60)  # Pause for 1 minute after every crawl\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8-G8fB6KyGP7",
        "outputId": "a06cfbb4-a5c0-4a49-8c8e-254943b34c52"
      },
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Crawling: https://rocksdb.org/\n",
            "Pausing for 1 minute to comply with crawl limit...\n",
            "Crawling: https://www.mongodb.com/lp/cloud/atlas/try4?utm_source=google&utm_campaign=search_gs_pl_evergreen_atlas_core_prosp-brand_gic-null_apac-ph_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=12212624359&adgroup=115749710543&cq_cmp=12212624359&gad_source=1&gclid=CjwKCAjw5Ky1BhAgEiwA5jGujmI0-QgV5DXTwtMUH6mJur8nIVAxkMMSoNHvp_519fBdvutBriWLHxoCe8AQAvD_BwE\n",
            "Pausing for 1 minute to comply with crawl limit...\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Create  llamaindex documents from the scraped content"
      ],
      "metadata": {
        "id": "gwu6VIMvTKp1"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import Document\n",
        "documents = []\n",
        "\n",
        "for _, scraped_content in url_response.items():\n",
        "    csv_data = scraped_content.get(\"csv_data\")\n",
        "    scraped_results = scraped_content.get(\"scraped_data\")\n",
        "\n",
        "    for scraped_site_dict in scraped_results:\n",
        "        for result in scraped_results:\n",
        "            markdown_content = result.get(\"markdown\")\n",
        "            title = result.get(\"metadata\").get(\"title\")\n",
        "            url = result.get(\"metadata\").get(\"sourceURL\")\n",
        "            documents.append(\n",
        "                Document(\n",
        "                    text=markdown_content,\n",
        "                    metadata={\n",
        "                        \"title\": title,\n",
        "                        \"url\": url,\n",
        "                        \"description\": csv_data.get(\"Description\"),\n",
        "                        \"category\": csv_data.get(\"Category\")\n",
        "                    }\n",
        "                )\n",
        "            )\n"
      ],
      "metadata": {
        "id": "fHSEWg7FBdSS"
      },
      "execution_count": 21,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Create The RAG Pipeline."
      ],
      "metadata": {
        "id": "uwtRhcpQT294"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.llms.openai import OpenAI\n",
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "from llama_index.core.node_parser import SentenceSplitter\n",
        "\n",
        "llm = OpenAI(model=\"gpt-4o-mini\")\n",
        "embed_model = OpenAIEmbedding(model=\"text-embedding-3-large\")\n",
        "text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=30)"
      ],
      "metadata": {
        "id": "iDOgwesPI-Kq"
      },
      "execution_count": 16,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import Settings\n",
        "\n",
        "Settings.llm = llm\n",
        "Settings.embed_model = embed_model\n",
        "Settings.text_splitter = text_splitter"
      ],
      "metadata": {
        "id": "R8Oi4MiJJQii"
      },
      "execution_count": 17,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "index = VectorStoreIndex.from_documents(documents)\n",
        "query_engine = index.as_query_engine()"
      ],
      "metadata": {
        "id": "61ZLk2GoJ4VH"
      },
      "execution_count": 18,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from IPython.display import Markdown, display\n",
        "def display_response(response):\n",
        "    display(Markdown(f\"<b>{response}</b>\"))"
      ],
      "metadata": {
        "id": "R1ImxmsoUNVo"
      },
      "execution_count": 19,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "res = query_engine.query(\"I want to use key value store which is the best db?\")\n",
        "display_response(res)\n",
        "\n",
        "print(\"-----------------\")\n",
        "# Show the retrieved nodes\n",
        "for src in res.source_nodes:\n",
        "  print(\"Node ID\\t\", src.node_id)\n",
        "  print(\"Title\\t\", src.metadata['title'])\n",
        "  print(\"URL\\t\", src.metadata['url'])\n",
        "  print(\"Score\\t\", src.score)\n",
        "  print(\"Description\\t\", src.metadata.get(\"description\"))\n",
        "  print(\"Category\\t\", src.metadata.get(\"category\"))\n",
        "  print(\"-_\"*20)\n",
        "\n",
        "\n",
        "res = query_engine.query(\"Compare the best No sql dbs?\")\n",
        "\n",
        "display_response(res.response)\n",
        "\n",
        "print(\"-----------------\")\n",
        "# Show the retrieved nodes\n",
        "for src in res.source_nodes:\n",
        "  print(\"Node ID\\t\", src.node_id)\n",
        "  print(\"Title\\t\", src.metadata['title'])\n",
        "  print(\"URL\\t\", src.metadata['url'])\n",
        "  print(\"Score\\t\", src.score)\n",
        "  print(\"Description\\t\", src.metadata.get(\"description\"))\n",
        "  print(\"Category\\t\", src.metadata.get(\"category\"))\n",
        "  print(\"-_\"*20)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 616
        },
        "id": "pcFcFgCvJ7Y8",
        "outputId": "84449163-47ed-4d15-a080-2a18600e5bc4"
      },
      "execution_count": 20,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "<b>RocksDB is a high-performance, adaptable key-value store optimized for fast storage environments. It is designed for maximum performance using a log structured database engine written in C++. RocksDB can handle a variety of workloads, from database storage engines to application data caching, making it a versatile option for different data needs.</b>"
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "-----------------\n",
            "Node ID\t d8913762-56d9-46e7-be6a-1472e8af426d\n",
            "Title\t RocksDB | A persistent key-value store | RocksDB\n",
            "URL\t http://rocksdb.org/\n",
            "Score\t 0.49236056175089676\n",
            "Description\t Persistent key-value store for fast storage environments\n",
            "Category\t Database\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "<b>MongoDB Atlas and RocksDB are both popular NoSQL databases, each with its own strengths. MongoDB Atlas is a cloud-based document-oriented database that offers a fully managed service with features like secure default settings, multi-cloud support, and a document model that aligns well with application code. On the other hand, RocksDB is a persistent key-value store known for its high performance in fast storage environments, particularly excelling in terms of low write amplification and write performance. Both databases cater to different use cases and have unique advantages based on the specific requirements of the application or workload.</b>"
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "-----------------\n",
            "Node ID\t 0e8a82be-ca4d-4526-b45b-7b78d2323d42\n",
            "Title\t MongoDB Atlas: Cloud Document Database | MongoDB\n",
            "URL\t https://www.mongodb.com/lp/cloud/atlas/try4?utm_source=google&utm_campaign=search_gs_pl_evergreen_atlas_core_prosp-brand_gic-null_apac-ph_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=12212624359&adgroup=115749710543&cq_cmp=12212624359&gad_source=1&gclid=CjwKCAjw5Ky1BhAgEiwA5jGujmI0-QgV5DXTwtMUH6mJur8nIVAxkMMSoNHvp_519fBdvutBriWLHxoCe8AQAvD_BwE\n",
            "Score\t 0.46048151159026907\n",
            "Description\t Document-oriented NoSQL database\n",
            "Category\t Database\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 4f6405f8-eec6-482b-b4d8-d9cc76e436a3\n",
            "Title\t Blog | RocksDB\n",
            "URL\t https://rocksdb.org/blog/\n",
            "Score\t 0.39345216447105164\n",
            "Description\t Persistent key-value store for fast storage environments\n",
            "Category\t Database\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "PZW4aivJYQ5I"
      },
      "execution_count": 20,
      "outputs": []
    }
  ]
}