File size: 10,597 Bytes
a2a9a44 0769f39 a2a9a44 0769f39 a2a9a44 0769f39 37cbdf5 f892f10 3e7bb9e 0769f39 37cbdf5 1281058 0769f39 37cbdf5 0769f39 37cbdf5 0769f39 37cbdf5 84f8c13 0769f39 84f8c13 37cbdf5 0769f39 bc02571 9b897d3 3e7bb9e 0769f39 37cbdf5 9b897d3 0769f39 f892f10 37cbdf5 0769f39 a2a9a44 8d71d41 a938093 a2a9a44 a938093 37cbdf5 a938093 3e7bb9e a2a9a44 0769f39 9adb76c 0769f39 9adb76c a2a9a44 0769f39 8d71d41 a2a9a44 0769f39 8d71d41 a2a9a44 3cf9e02 0769f39 a2a9a44 8d71d41 9adb76c 0769f39 a2a9a44 0769f39 37cbdf5 0769f39 a2a9a44 069addf 37cbdf5 a2a9a44 bddd047 0769f39 a2a9a44 37cbdf5 a2a9a44 e951b9f a2a9a44 f1d2f05 a2a9a44 d41011f a2a9a44 84f8c13 a2a9a44 e951b9f a2a9a44 f1d2f05 a2a9a44 8d71d41 9b897d3 8d71d41 a2a9a44 f1d2f05 8d71d41 a2a9a44 37cbdf5 8d71d41 a2a9a44 8d71d41 74dcf79 8d71d41 0cfc98f 8d71d41 74dcf79 8d71d41 0769f39 1281058 0769f39 1281058 37cbdf5 069addf 37cbdf5 8d71d41 f0db5cb 8d71d41 a2a9a44 8d71d41 3e7bb9e 8d71d41 a2a9a44 6430286 8d71d41 6430286 8d71d41 37cbdf5 8d71d41 37cbdf5 c18d515 8d71d41 9adb76c 8d71d41 beeea5a 8d71d41 3e7bb9e 8d71d41 a2a9a44 8d71d41 3e7bb9e 8d71d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import logging
import os
import pickle
from datetime import datetime
from typing import Optional
import chromadb
import gradio as gr
from custom_retriever import CustomRetriever
from dotenv import load_dotenv
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import VectorStoreIndex, get_response_synthesizer
from llama_index.core.agent import AgentRunner, ReActAgent
# from llama_index.core.chat_engine import (
# CondensePlusContextChatEngine,
# CondenseQuestionChatEngine,
# ContextChatEngine,
# )
from llama_index.core.data_structs import Node
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.schema import BaseNode, MetadataMode, NodeWithScore, TextNode
from llama_index.core.tools import (
FunctionTool,
QueryEngineTool,
RetrieverTool,
ToolMetadata,
)
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.llms.openai import OpenAI
from llama_index.llms.openai.utils import GPT4_MODELS
from llama_index.vector_stores.chroma import ChromaVectorStore
from tutor_prompts import (
TEXT_QA_TEMPLATE,
QueryValidation,
system_message_openai_agent,
system_message_validation,
system_prompt,
)
load_dotenv(".env")
# from utils import init_mongo_db
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("gradio").setLevel(logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
# # This variables are used to intercept API calls
# # launch mitmweb
# cert_file = "/Users/omar/Documents/mitmproxy-ca-cert.pem"
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
# os.environ["SSL_CERT_FILE"] = cert_file
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
DB_PATH = os.getenv("DB_PATH", f"scripts/ai-tutor-vector-db")
DB_COLLECTION = os.getenv("DB_NAME", "ai-tutor-vector-db")
if not os.path.exists(DB_PATH):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co./datasets/towardsai-buster/ai-tutor-db/tree/main
logger.warning(
f"Vector database does not exist at {DB_PATH}, downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-buster/ai-tutor-vector-db",
local_dir=DB_PATH,
repo_type="dataset",
)
logger.info(f"Downloaded vector database to {DB_PATH}")
AVAILABLE_SOURCES_UI = [
"HF Transformers",
"Towards AI Blog",
"Wikipedia",
"OpenAI Docs",
"LangChain Docs",
"LLama-Index Docs",
"RAG Course",
]
AVAILABLE_SOURCES = [
"HF_Transformers",
"towards_ai_blog",
"wikipedia",
"openai_docs",
"langchain_docs",
"llama_index_docs",
"rag_course",
]
from llama_index.llms.openai.utils import (
ALL_AVAILABLE_MODELS,
AZURE_TURBO_MODELS,
CHAT_MODELS,
GPT3_5_MODELS,
GPT3_MODELS,
GPT4_MODELS,
TURBO_MODELS,
)
# Add new models to GPT4_MODELS
new_gpt4_models = {
"gpt-4-1106-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-05-13": 128000,
"gpt-4o-mini": 128000,
}
GPT4_MODELS.update(new_gpt4_models)
# Update ALL_AVAILABLE_MODELS
ALL_AVAILABLE_MODELS.update(new_gpt4_models)
# # Initialize MongoDB
# mongo_db = (
# init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
# if MONGODB_URI
# else logger.warning("No mongodb uri found, you will not be able to save data.")
# )
db2 = chromadb.PersistentClient(path=DB_PATH)
chroma_collection = db2.get_or_create_collection(DB_COLLECTION)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=400)],
show_progress=True,
use_async=True,
)
vector_retriever = VectorIndexRetriever(
index=index,
similarity_top_k=10,
use_async=True,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
)
memory = ChatMemoryBuffer.from_defaults(token_limit=120000)
with open("scripts/ai-tutor-vector-db/document_dict.pkl", "rb") as f:
document_dict = pickle.load(f)
custom_retriever = CustomRetriever(vector_retriever, document_dict)
def format_sources(completion) -> str:
if len(completion.sources) == 0:
return ""
# Mapping of source system names to user-friendly names
display_source_to_ui = {
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
documents_answer_template: str = (
"π Here are the sources I used to answer your question:\n\n{documents}"
)
document_template: str = "[π {source}: {title}]({url}), relevance: {score:2.2f}"
documents = "\n".join(
[
document_template.format(
title=src.metadata["title"],
score=src.score,
source=display_source_to_ui.get(
src.metadata["source"], src.metadata["source"]
),
url=src.metadata["url"],
)
for src in completion.sources[0].raw_output
]
)
return documents_answer_template.format(documents=documents)
def add_sources(answer_str, completion):
if completion is None:
yield answer_str
formatted_sources = format_sources(completion)
if formatted_sources == "":
yield answer_str
if formatted_sources != "":
answer_str += "\n\n" + formatted_sources
yield answer_str
def generate_completion(
query,
history,
sources,
model,
):
print(f"query: {query}")
print(model)
print(sources)
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
llm = Gemini(
api_key=os.getenv("GOOGLE_API_KEY"),
model=f"models/{model}",
temperature=1,
max_tokens=None,
)
else:
llm = OpenAI(temperature=1, model=model, max_tokens=None)
# response_synthesizer = get_response_synthesizer(
# llm=llm,
# response_mode="simple_summarize",
# text_qa_template=TEXT_QA_TEMPLATE,
# streaming=True,
# )
# custom_query_engine = RetrieverQueryEngine(
# retriever=custom_retriever,
# response_synthesizer=response_synthesizer,
# )
# agent = CondensePlusContextChatEngine.from_defaults(
# agent = CondenseQuestionChatEngine.from_defaults(
# agent = ContextChatEngine.from_defaults(
# retriever=custom_retriever,
# context_template=system_prompt,
# llm=llm,
# memory=memory,
# verbose=True,
# )
query_engine_tools = [
RetrieverTool(
retriever=custom_retriever,
metadata=ToolMetadata(
name="AI_information",
description="""Only use this tool if necessary. The 'AI_information' tool returns information about the artificial intelligence (AI) field. When using this tool, the input should be the user's question rewritten as a statement. e.g. When the user asks 'How can I quantize a model?', the input should be 'Model quantization'. The input can also be adapted to focus on specific aspects or further details of the current topic under discussion. This dynamic input approach allows for a tailored exploration of AI subjects, ensuring that responses are relevant and informative. Employ this tool to fetch nuanced information on topics such as model training, fine-tuning, and LLM augmentation, thereby facilitating a rich, context-aware dialogue. """,
),
)
]
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
# agent = AgentRunner.from_llm(
# llm=llm,
# tools=query_engine_tools,
# verbose=True,
# memory=memory,
# # system_prompt=system_message_openai_agent,
# )
agent = ReActAgent.from_tools(
llm=llm,
memory=memory,
tools=query_engine_tools,
verbose=True,
# system_prompt=system_message_openai_agent,
)
else:
agent = OpenAIAgent.from_tools(
llm=llm,
memory=memory,
tools=query_engine_tools,
verbose=True,
system_prompt=system_message_openai_agent,
)
# completion = custom_query_engine.query(query)
completion = agent.stream_chat(query)
answer_str = ""
for token in completion.response_gen:
answer_str += token
yield answer_str
logger.info(f"completion: {answer_str=}")
for sources in add_sources(answer_str, completion):
yield sources
logger.info(f"source: {sources=}")
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value["value"])
else:
print("You downvoted this response: " + data.value["value"])
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
sources = gr.CheckboxGroup(
AVAILABLE_SOURCES_UI, label="Sources", value="HF Transformers", interactive=False
)
model = gr.Dropdown(
[
"gemini-1.5-pro",
"gemini-1.5-flash",
"gpt-3.5-turbo",
"gpt-4o-mini",
"gpt-4o",
],
label="Model",
value="gpt-4o-mini",
interactive=False,
)
with gr.Blocks(
fill_height=True,
title="Towards AI π€",
analytics_enabled=True,
) as demo:
chatbot = gr.Chatbot(
scale=1,
placeholder="<strong>Towards AI π€: A Question-Answering Bot for anything AI-related</strong><br>",
show_label=False,
likeable=True,
show_copy_button=True,
)
chatbot.like(vote, None, None)
gr.ChatInterface(
fn=generate_completion,
chatbot=chatbot,
undo_btn=None,
additional_inputs=[sources, model],
additional_inputs_accordion=accordion,
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)
|