File size: 28,161 Bytes
e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 be5df4e e150328 be5df4e 0bfedbd e2e30e0 e150328 be5df4e 0bfedbd be5df4e e2e30e0 be5df4e e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e2e30e0 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd 5fa4e55 e150328 0bfedbd e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 5fa4e55 e150328 0bfedbd e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 5fa4e55 e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 0bfedbd e150328 be5df4e 0bfedbd be5df4e e150328 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 1def9d5 be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e 0bfedbd be5df4e e2e30e0 0bfedbd e2e30e0 0bfedbd e2e30e0 0bfedbd e2e30e0 1def9d5 e2e30e0 0bfedbd e2e30e0 1def9d5 e2e30e0 1def9d5 e2e30e0 0bfedbd e2e30e0 0bfedbd e2e30e0 0bfedbd e150328 0bfedbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Prompting_101.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DMXyyXD0xix9"
},
"source": [
"# Install Packages and Setup Variables\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "o4Q0N2omkAoZ",
"outputId": "6bc470f0-2efe-4cd8-d3e3-1b20593ad968"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m320.6/320.6 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"!pip install -q openai==1.37.0"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "xxK7EAAvr2aT"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set the following API Keys in the Python environment. Will be used later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "68RbStS-xpbL"
},
"source": [
"# Load the API client\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "La8hdWqJkFkh"
},
"outputs": [],
"source": [
"from openai import OpenAI\n",
"\n",
"# Defining the \"client\" object that enables\n",
"# us to connect to OpenAI API endpoints.\n",
"client = OpenAI()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CC-sa_uv6J2C"
},
"source": [
"# Query the API\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tCgIt1OJH8-M"
},
"source": [
"## Bad Prompt\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_gSnVAvE0tGN"
},
"outputs": [],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[{\"role\": \"user\", \"content\": \"How AI can help my project?\"}],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ET_l06LiojaN",
"outputId": "72207c84-8d4f-4e5c-bfda-2d850b4b4a5b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AI can significantly enhance your project in various ways, depending on the nature and goals of your project. Here are some general areas where AI can be beneficial:\n",
"\n",
"### 1. **Data Analysis and Insights**\n",
"- **Predictive Analytics:** AI can analyze historical data to predict future trends, helping you make informed decisions.\n",
"- **Pattern Recognition:** AI algorithms can identify patterns and correlations in large datasets that might be missed by human analysis.\n",
"\n",
"### 2. **Automation**\n",
"- **Task Automation:** Automate repetitive tasks such as data entry, scheduling, and customer service.\n",
"- **Process Optimization:** AI can streamline workflows and improve efficiency by optimizing processes.\n",
"\n",
"### 3. **Personalization**\n",
"- **Customer Experience:** Use AI to personalize user experiences, such as recommending products or content based on user behavior.\n",
"- **Targeted Marketing:** AI can help segment your audience and create targeted marketing campaigns.\n",
"\n",
"### 4. **Natural Language Processing (NLP)**\n",
"- **Chatbots:** Implement AI-driven chatbots to handle customer inquiries, providing instant support and freeing up human resources.\n",
"- **Sentiment Analysis:** Analyze customer feedback and social media to gauge public sentiment about your project or product.\n",
"\n",
"### 5. **Image and Video Analysis**\n",
"- **Computer Vision:** Use AI to analyze images and videos for various applications, such as quality control, security, and content moderation.\n",
"- **Facial Recognition:** Implement facial recognition for security or personalized user experiences.\n",
"\n",
"### 6. **Decision Support**\n",
"- **Recommendation Systems:** AI can provide recommendations based on data analysis, helping you make better decisions.\n",
"- **Risk Assessment:** AI can evaluate risks and provide insights to mitigate them.\n",
"\n",
"### 7. **Development and Testing**\n",
"- **Code Generation:** AI tools can assist in writing and debugging code, speeding up the development process.\n",
"- **Automated Testing:** Use AI to automate software testing, ensuring higher quality and faster release cycles.\n",
"\n",
"### 8. **Resource Management**\n",
"- **Supply Chain Optimization:** AI can optimize inventory management, demand forecasting, and logistics.\n",
"- **Human Resources:** AI can assist in talent acquisition, performance evaluation, and employee engagement.\n",
"\n",
"### 9. **Innovation and Creativity**\n",
"- **Idea Generation:** AI can help brainstorm new ideas by analyzing existing data and trends.\n",
"- **Content Creation:** Use AI to generate content, such as articles, reports, or even creative writing.\n",
"\n",
"### 10. **Security**\n",
"- **Fraud Detection:** AI can identify unusual patterns that may indicate fraudulent activity.\n",
"- **Cybersecurity:** AI can help detect and respond to security threats in real-time.\n",
"\n",
"### Steps to Implement AI in Your Project\n",
"1. **Identify Needs:** Determine which aspects of your project could benefit from AI.\n",
"2. **Data Collection:** Gather the necessary data that AI will need to function effectively.\n",
"3. **Choose the Right Tools:** Select AI tools and platforms that fit your project requirements.\n",
"4. **Develop and Train Models:** Develop AI models and train them using your data.\n",
"5. **Integration:** Integrate AI solutions into your existing systems and workflows.\n",
"6. **Monitor and Optimize:** Continuously monitor the performance of AI systems and make adjustments as needed.\n",
"\n",
"By leveraging AI, you can enhance efficiency, improve decision-making, and create more personalized and effective solutions for your project.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_Pyd2dmOH51S"
},
"source": [
"## Good Prompt\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gHXHXUG09d4q"
},
"outputs": [],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[{\"role\": \"user\", \"content\": \"How can I do summarization using AI?\"}],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0PfYfRCbuFiK",
"outputId": "dcd51828-493f-4a09-9803-be7c0cdf12f4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Summarization using AI involves using machine learning models to condense a large body of text into a shorter version while retaining the key information and main ideas. There are two main types of summarization techniques: extractive and abstractive.\n",
"\n",
"1. **Extractive Summarization**: This method involves selecting important sentences, phrases, or sections directly from the source text and concatenating them to create a summary. It doesn't generate new sentences but rather extracts and combines parts of the original text.\n",
"\n",
"2. **Abstractive Summarization**: This method involves generating new sentences that convey the main ideas of the source text. It is more complex as it requires understanding the context and rephrasing the content in a coherent manner.\n",
"\n",
"Here are some steps and tools you can use to perform summarization using AI:\n",
"\n",
"### Using Pre-trained Models and Libraries\n",
"\n",
"1. **Hugging Face Transformers**:\n",
" - Hugging Face provides a library called `transformers` which includes pre-trained models for both extractive and abstractive summarization.\n",
" - Models like BART, T5, and Pegasus are popular for abstractive summarization.\n",
"\n",
" ```python\n",
" from transformers import pipeline\n",
"\n",
" # Load the summarization pipeline\n",
" summarizer = pipeline(\"summarization\")\n",
"\n",
" # Input text\n",
" text = \"\"\"\n",
" Your long text goes here...\n",
" \"\"\"\n",
"\n",
" # Generate summary\n",
" summary = summarizer(text, max_length=150, min_length=30, do_sample=False)\n",
" print(summary[0]['summary_text'])\n",
" ```\n",
"\n",
"2. **spaCy and Sumy**:\n",
" - `spaCy` is a popular NLP library that can be used in conjunction with `Sumy` for extractive summarization.\n",
"\n",
" ```python\n",
" import spacy\n",
" from sumy.parsers.plaintext import PlaintextParser\n",
" from sumy.nlp.tokenizers import Tokenizer\n",
" from sumy.summarizers.lsa import LsaSummarizer\n",
"\n",
" # Load spaCy model\n",
" nlp = spacy.load('en_core_web_sm')\n",
"\n",
" # Input text\n",
" text = \"\"\"\n",
" Your long text goes here...\n",
" \"\"\"\n",
"\n",
" # Parse the text\n",
" parser = PlaintextParser.from_string(text, Tokenizer(\"english\"))\n",
"\n",
" # Summarize using LSA\n",
" summarizer = LsaSummarizer()\n",
" summary = summarizer(parser.document, 3) # Summarize to 3 sentences\n",
"\n",
" for sentence in summary:\n",
" print(sentence)\n",
" ```\n",
"\n",
"### Using Online Services\n",
"\n",
"1. **OpenAI GPT-3**:\n",
" - OpenAI's GPT-3 can be used for summarization tasks. You can access it via the OpenAI API.\n",
"\n",
" ```python\n",
" import openai\n",
"\n",
" openai.api_key = 'your-api-key'\n",
"\n",
" response = openai.Completion.create(\n",
" engine=\"text-davinci-003\",\n",
" prompt=\"Summarize the following text:\\n\\nYour long text goes here...\",\n",
" max_tokens=150\n",
" )\n",
"\n",
" print(response.choices[0].text.strip())\n",
" ```\n",
"\n",
"2. **Google Cloud Natural Language API**:\n",
" - Google Cloud offers a Natural Language API that includes features for text analysis and summarization.\n",
"\n",
"### Custom Models\n",
"\n",
"If you have specific requirements or a unique dataset, you might want to train your own summarization model. This involves:\n",
"\n",
"1. **Data Collection**: Gather a large dataset of documents and their corresponding summaries.\n",
"2. **Preprocessing**: Clean and preprocess the text data.\n",
"3. **Model Training**: Use frameworks like TensorFlow or PyTorch to train a model. You can start with a pre-trained model and fine-tune it on your dataset.\n",
"4. **Evaluation**: Evaluate the model using metrics like ROUGE to ensure it generates high-quality summaries.\n",
"\n",
"### Example of Fine-Tuning a Model\n",
"\n",
"```python\n",
"from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments\n",
"\n",
"# Load pre-trained model and tokenizer\n",
"model = T5ForConditionalGeneration.from_pretrained('t5-small')\n",
"tokenizer = T5Tokenizer.from_pretrained('t5-small')\n",
"\n",
"# Prepare dataset (example)\n",
"train_texts = [\"Your training texts...\"]\n",
"train_summaries = [\"Your training summaries...\"]\n",
"\n",
"# Tokenize data\n",
"train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=512)\n",
"train_labels = tokenizer(train_summaries, truncation=True, padding=True, max_length=150)\n",
"\n",
"# Create dataset\n",
"class SummarizationDataset(torch.utils.data.Dataset):\n",
" def __init__(self, encodings, labels):\n",
" self.encodings = encodings\n",
" self.labels = labels\n",
"\n",
" def __getitem__(self, idx):\n",
" item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n",
" item['labels'] = torch.tensor(self.labels['input_ids'][idx])\n",
" return item\n",
"\n",
" def __len__(self):\n",
" return len(self.encodings['input_ids'])\n",
"\n",
"train_dataset = SummarizationDataset(train_encodings, train_labels)\n",
"\n",
"# Training arguments\n",
"training_args = TrainingArguments(\n",
" output_dir='./results',\n",
" num_train_epochs=3,\n",
" per_device_train_batch_size=4,\n",
" save_steps=10_000,\n",
" save_total_limit=2,\n",
")\n",
"\n",
"# Trainer\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
")\n",
"\n",
"# Train model\n",
"trainer.train()\n",
"```\n",
"\n",
"By following these steps and using the appropriate tools, you can effectively perform text summarization using AI.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p8MBdV_aH2Dq"
},
"source": [
"## Failed Edge Case\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "r7By9Sy498p9"
},
"outputs": [],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"How can I do summarization multiple documents using Google Gemini model?\",\n",
" }\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QyIsGPp4AnVY",
"outputId": "0fc515ef-2e5a-4146-ca57-2147d5a04610"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"As of my last update in October 2023, Google Gemini is a suite of AI models developed by Google, which includes capabilities for natural language understanding and generation. If you want to use Google Gemini for summarizing multiple documents, you would typically follow these steps:\n",
"\n",
"1. **Access the Model**: Ensure you have access to the Google Gemini model. This might be through an API provided by Google Cloud or another platform where the model is hosted.\n",
"\n",
"2. **Prepare Your Documents**: Gather the documents you want to summarize. Ensure they are in a format that can be processed by the model (e.g., plain text, PDF, etc.).\n",
"\n",
"3. **Preprocess the Documents**: Depending on the input requirements of the Gemini model, you might need to preprocess your documents. This could involve cleaning the text, removing unnecessary formatting, or splitting the documents into manageable chunks if they are too large.\n",
"\n",
"4. **API Integration**: Use the API provided by Google to interact with the Gemini model. You will need to authenticate your requests, typically using an API key or OAuth token.\n",
"\n",
"5. **Send Requests**: Send the documents to the model for summarization. This might involve sending each document individually or batching them together if the API supports it.\n",
"\n",
"6. **Handle Responses**: Collect the summaries returned by the model. You might need to post-process these summaries to combine them or format them as needed.\n",
"\n",
"Here is a simplified example using Python pseudocode to illustrate the process:\n",
"\n",
"```python\n",
"import requests\n",
"\n",
"# Define your API endpoint and API key\n",
"api_endpoint = \"https://api.google.com/gemini/summarize\"\n",
"api_key = \"YOUR_API_KEY\"\n",
"\n",
"# Function to summarize a single document\n",
"def summarize_document(document_text):\n",
" headers = {\n",
" \"Authorization\": f\"Bearer {api_key}\",\n",
" \"Content-Type\": \"application/json\"\n",
" }\n",
" data = {\n",
" \"document\": document_text\n",
" }\n",
" response = requests.post(api_endpoint, headers=headers, json=data)\n",
" if response.status_code == 200:\n",
" return response.json().get(\"summary\")\n",
" else:\n",
" raise Exception(f\"Error: {response.status_code}, {response.text}\")\n",
"\n",
"# List of documents to summarize\n",
"documents = [\n",
" \"Document 1 text...\",\n",
" \"Document 2 text...\",\n",
" \"Document 3 text...\"\n",
"]\n",
"\n",
"# Summarize each document\n",
"summaries = []\n",
"for doc in documents:\n",
" summary = summarize_document(doc)\n",
" summaries.append(summary)\n",
"\n",
"# Combine summaries if needed\n",
"combined_summary = \"\\n\".join(summaries)\n",
"\n",
"print(\"Combined Summary:\")\n",
"print(combined_summary)\n",
"```\n",
"\n",
"### Important Considerations:\n",
"- **API Limits**: Be aware of any rate limits or usage quotas associated with the API.\n",
"- **Document Size**: Large documents might need to be split into smaller parts before summarization.\n",
"- **Post-Processing**: Depending on the quality of the summaries, you might need to do some post-processing to ensure coherence and readability.\n",
"\n",
"### Alternative Approaches:\n",
"- **Batch Processing**: If the API supports batch processing, you can send multiple documents in a single request to improve efficiency.\n",
"- **Custom Models**: If you have specific requirements, consider fine-tuning a model on your dataset using Google Cloud's AI Platform.\n",
"\n",
"Always refer to the latest documentation provided by Google for the most accurate and up-to-date information on using the Gemini model for your specific use case.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "StiZyiJ9e9ci"
},
"source": [
"## Control Output\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"id": "MghL9RV5HngY"
},
"outputs": [],
"source": [
"system_prompt = \"\"\"You are a helpful assistant who only answer question related to Artificial Intelligence.\n",
" If the question is not related, respond with the following: The question is not related to AI.\"\"\"\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": \"What is the tallest mountain in the world?\"},\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xVMysd9fexdf",
"outputId": "18656879-288d-4152-f176-6e29965469be"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The question is not related to AI.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "80zGzWQVez9d"
},
"outputs": [],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": \"What is the most popular AI library?\"},\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DqWLGQNke4zm",
"outputId": "121392d7-7638-4cfe-91ae-8b456dea7d4f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"One of the most popular AI libraries is TensorFlow, developed by Google. It is widely used for machine learning and deep learning applications. Another highly popular library is PyTorch, developed by Facebook's AI Research lab, which is favored for its dynamic computation graph and ease of use. Both libraries have extensive communities and support a wide range of AI tasks.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"id": "-xCC_7fQ9Q0v"
},
"outputs": [],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" temperature=0.0,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"Let's play a game. Imagine the mountain are the same as AI libraries, what is the tallest mountain in terms of library and the actual mountain?\",\n",
" },\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RwejpWBu9YfW",
"outputId": "e7bf1eb6-603d-4806-e92b-7bccd254bbe2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In the context of AI libraries, the \"tallest mountain\" could be considered the most prominent or widely used library. TensorFlow, developed by Google, is often regarded as one of the most significant and widely adopted AI libraries due to its extensive features, community support, and versatility.\n",
"\n",
"In terms of actual mountains, Mount Everest is the tallest mountain in the world, standing at 8,848 meters (29,029 feet) above sea level.\n",
"\n",
"So, in this analogy:\n",
"- The \"tallest mountain\" in AI libraries could be TensorFlow.\n",
"- The tallest actual mountain is Mount Everest.\n"
]
}
],
"source": [
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gF2RyUc69bSU"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyP0QK7K3VR/N7oa9e//Q49L",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|