File size: 13,047 Bytes
14a73a7
 
 
 
 
0bfedbd
 
14a73a7
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
0bfedbd
 
 
 
14a73a7
 
 
0bfedbd
 
 
 
 
14a73a7
 
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
14a73a7
0bfedbd
14a73a7
 
 
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
14a73a7
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
 
 
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
14a73a7
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
14a73a7
 
 
 
 
 
0bfedbd
 
 
 
14a73a7
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
14a73a7
 
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
0bfedbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
 
 
 
 
 
 
14a73a7
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
0bfedbd
 
 
 
 
 
14a73a7
0bfedbd
14a73a7
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
 
 
 
 
 
0bfedbd
 
 
 
 
14a73a7
 
 
 
0bfedbd
14a73a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
14a73a7
0bfedbd
14a73a7
0bfedbd
 
 
14a73a7
 
0bfedbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Agents_with_OpenAI_Assistants.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "UPKtF57twVp8",
        "outputId": "0af0655d-d8a0-478b-d7f3-8ce55292454a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m328.5/328.5 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h"
          ]
        }
      ],
      "source": [
        "!pip install -q openai==1.37.0"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "gf1VoYD-Y7TL"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mLTbUTtthHGG"
      },
      "source": [
        "# Math Tutor\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "QxYu2uw9YoG8"
      },
      "outputs": [],
      "source": [
        "from openai import OpenAI\n",
        "\n",
        "client = OpenAI()\n",
        "\n",
        "assistant = client.beta.assistants.create(\n",
        "    name=\"Math Tutor\",\n",
        "    instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
        "    model=\"gpt-4o\",\n",
        "    tools=[{\"type\": \"code_interpreter\"}],\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "zdAu65wDY43T"
      },
      "outputs": [],
      "source": [
        "thread = client.beta.threads.create()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "id": "AeiK-j7NZIJI"
      },
      "outputs": [],
      "source": [
        "message = client.beta.threads.messages.create(\n",
        "    thread_id=thread.id,\n",
        "    role=\"user\",\n",
        "    content=\"I need to solve the equation `3x + 11 = 14`. Can you help me?\",\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "id": "-PWEekBTZJSR"
      },
      "outputs": [],
      "source": [
        "run = client.beta.threads.runs.create_and_poll(\n",
        "    thread_id=thread.id, assistant_id=assistant.id\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 13,
      "metadata": {
        "id": "SKcOwN2XZKTy"
      },
      "outputs": [],
      "source": [
        "messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 21,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ndRo014JZSLo",
        "outputId": "7186ef9a-7fb9-4e4b-c1cf-365f4d0d3bdc"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Of course! To solve the equation \\(3x + 11 = 14\\), follow these steps:\n",
            "\n",
            "1. **Isolate the variable term**:\n",
            "   Subtract 11 from both sides of the equation.\n",
            "   \\[\n",
            "   3x + 11 - 11 = 14 - 11\n",
            "   \\]\n",
            "   Simplifies to:\n",
            "   \\[\n",
            "   3x = 3\n",
            "   \\]\n",
            "\n",
            "2. **Solve for \\( x \\)**:\n",
            "   Divide both sides of the equation by 3.\n",
            "   \\[\n",
            "   x = \\frac{3}{3}\n",
            "   \\]\n",
            "   Simplifies to:\n",
            "   \\[\n",
            "   x = 1\n",
            "   \\]\n",
            "\n",
            "So, the solution to the equation is \\( x = 1 \\).\n",
            "\n",
            "Let's verify this by substituting \\( x = 1 \\) back into the original equation to confirm that both sides are equal.\n",
            "\n",
            "\\[\n",
            "3(1) + 11 = 14\n",
            "\\]\n",
            "\\[\n",
            "3 + 11 = 14\n",
            "\\]\n",
            "\\[\n",
            "14 = 14\n",
            "\\]\n",
            "\n",
            "The left and right sides are equal, so the solution \\( x = 1 \\) is correct.\n"
          ]
        }
      ],
      "source": [
        "print(messages[0].content[0].text.value)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cgE3EEaHhFEh"
      },
      "source": [
        "# Customer Support\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "P-zDilXchGGU",
        "outputId": "9e9e306a-61fb-4617-f5a2-99eedd8f6bd2"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "--2024-07-23 17:09:57--  https://personales.unican.es/corcuerp/linux/resources/LinuxCommandLineCheatSheet_1.pdf\n",
            "Resolving personales.unican.es (personales.unican.es)... 193.144.193.111\n",
            "Connecting to personales.unican.es (personales.unican.es)|193.144.193.111|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 267816 (262K) [application/pdf]\n",
            "Saving to: β€˜LinuxCommandLineCheatSheet_1.pdf’\n",
            "\n",
            "LinuxCommandLineChe 100%[===================>] 261.54K   314KB/s    in 0.8s    \n",
            "\n",
            "2024-07-23 17:09:58 (314 KB/s) - β€˜LinuxCommandLineCheatSheet_1.pdf’ saved [267816/267816]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "!wget https://personales.unican.es/corcuerp/linux/resources/LinuxCommandLineCheatSheet_1.pdf"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "IqLR9ss9lKrz"
      },
      "outputs": [],
      "source": [
        "from openai import OpenAI\n",
        "\n",
        "client = OpenAI()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "VevcGLDCjdUi",
        "outputId": "049f6306-84f6-434d-f3c7-dc0741bbbfb6"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "completed\n",
            "FileCounts(cancelled=0, completed=1, failed=0, in_progress=0, total=1)\n"
          ]
        }
      ],
      "source": [
        "# Create a vector store caled \"Financial Statements\"\n",
        "vector_store = client.beta.vector_stores.create(name=\"Tech Support\")\n",
        "\n",
        "# Ready the files for upload to OpenAI\n",
        "file_streams = [open(\"LinuxCommandLineCheatSheet_1.pdf\", \"rb\")]\n",
        "\n",
        "# Use the upload and poll SDK helper to upload the files, add them to the vector store,\n",
        "# and poll the status of the file batch for completion.\n",
        "file_batch = client.beta.vector_stores.file_batches.upload_and_poll(\n",
        "    vector_store_id=vector_store.id, files=file_streams\n",
        ")\n",
        "\n",
        "# You can print the status and the file counts of the batch to see the result of this operation.\n",
        "print(file_batch.status)\n",
        "print(file_batch.file_counts)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "id": "pTzfL1XCjdXT"
      },
      "outputs": [],
      "source": [
        "assistant = client.beta.assistants.create(\n",
        "    name=\"Tech Support\",\n",
        "    instructions=\"You are a tech support chatbot. Use the product manual to respond accurately to customer inquiries.\",\n",
        "    model=\"gpt-4o\",\n",
        "    tools=[{\"type\": \"file_search\"}],\n",
        "    tool_resources={\"file_search\": {\"vector_store_ids\": [vector_store.id]}},\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "id": "FSTCsotRjdPj"
      },
      "outputs": [],
      "source": [
        "# Create a thread and attach the file to the message\n",
        "thread = client.beta.threads.create(\n",
        "    messages=[\n",
        "        {\n",
        "            \"role\": \"user\",\n",
        "            \"content\": \"What 'ls' command do?\",\n",
        "        }\n",
        "    ]\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "id": "jdD5yJK2jdMu"
      },
      "outputs": [],
      "source": [
        "run = client.beta.threads.runs.create_and_poll(\n",
        "    thread_id=thread.id, assistant_id=assistant.id\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "p0w3ts1DjdKW",
        "outputId": "a1720556-12df-42ff-bfd4-a001f3bb2565"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The `ls` command in Linux is used to list the contents of a directory. The common usage of `ls` can be extended with options to display detailed information about files and directories. For example:\n",
            "\n",
            "- `ls -al` lists all files, including hidden ones, in a long listing format that provides detailed information such as permissions, number of links, owner, group, size, and timestamp【4:0†source】【4:1†source】.\n"
          ]
        }
      ],
      "source": [
        "messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))\n",
        "\n",
        "print(messages[0].content[0].text.value)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 24,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "p1KafLldjdFI",
        "outputId": "0f1f388f-c04a-4eda-fe6b-9a00d83f0070"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "[FileCitationAnnotation(end_index=394, file_citation=FileCitation(file_id='file-EMNwQYbq7rGni9Ct4V7B8XTR'), start_index=382, text='【4:0†source】', type='file_citation'),\n",
              " FileCitationAnnotation(end_index=406, file_citation=FileCitation(file_id='file-EMNwQYbq7rGni9Ct4V7B8XTR'), start_index=394, text='【4:1†source】', type='file_citation')]"
            ]
          },
          "execution_count": 24,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "messages[0].content[0].text.annotations"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "authorship_tag": "ABX9TyOyF/2q5TUS6bkOmPxn67kV",
      "include_colab_link": true,
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.12.4"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}