tournas commited on
Commit
cb3a151
·
verified ·
1 Parent(s): 403cfe0

Upload 2 files

Browse files
Files changed (2) hide show
  1. app (1).py +37 -0
  2. requirements (1).txt +3 -0
app (1).py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from transformers import BertTokenizer, BertForSequenceClassification
4
+ import torch
5
+
6
+ @st.cache_resource
7
+ def get_model():
8
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
9
+ model = BertForSequenceClassification.from_pretrained('tournas/FineTuneBert')
10
+ return tokenizer, model
11
+
12
+ tokenizer, model = get_model()
13
+
14
+ user_input = st.text_area('Enter Text to Analyze')
15
+ button = st.button('Analyze')
16
+
17
+ d = {
18
+
19
+ 1: 'Toxic',
20
+ 0: 'Non Toxic'
21
+ }
22
+
23
+ if user_input and button:
24
+ st.write('Analyzing...please wait.')
25
+
26
+ # Tokenization with padding and truncation
27
+ test_sample = tokenizer([user_input], padding=True, truncation=True, max_length=512, return_tensors='pt')
28
+
29
+ # Get output from the model
30
+ output = model(**test_sample)
31
+
32
+ # Softmax for probabilities
33
+ probs = torch.softmax(output.logits, dim=-1).detach().numpy()
34
+
35
+ # Prediction: Find the class with the highest probability
36
+ y_pred = np.argmax(probs, axis=1)
37
+ st.write('prediction: ',d[y_pred[0]])
requirements (1).txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ torch
3
+ transformers