TOPSInfosol's picture
Create app.py
395598d verified
import os
import json
import pandas as pd
import gradio as gr
import numpy as np
from PIL import Image
from theme_tops import DarkTheme
from clip_base import OpenAiClipModel
import tensorflow as tf
tagged_images = {}
MODEL_PATH = os.path.join(os.getcwd(), 'clip_tflite_model.tflite')
JSON_PATH = os.path.join(os.getcwd(), 'categories.json')
def test_model(image):
"""Test the TFLite model with an uploaded image"""
try:
# Check if model and JSON files exist
if not os.path.exists(MODEL_PATH):
return "Error: Model file not found. Please generate the model first."
if not os.path.exists(JSON_PATH):
return "Error: Categories file not found. Please generate the model first."
# Load and preprocess image
processed_image = load_and_preprocess_image(image)
# Load the TFLite model
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
embeddings = interpreter.get_tensor(output_details[0]['index'])
with open(JSON_PATH, 'r') as f:
categories = json.load(f)
scores_with_ids = []
for i, score in enumerate(embeddings.flatten()):
scores_with_ids.append((float(score), i))
scores_with_ids.sort(reverse=True) # Sort by score (first element of tuple)
top_results = scores_with_ids[:5]
results = []
for score, category_id in top_results:
percentage = score * 100
category = next((cat['title'] for cat in categories if cat['id'] == category_id),
f"Category {category_id}")
results.append(f"{category}: {percentage:.2f}%")
return "\n".join(results)
except Exception as e:
return f"Error processing image: {str(e)}"
def load_and_preprocess_image(image):
"""Preprocess image for model input"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = image.resize((224, 224))
image = image.convert('RGB')
image = np.array(image).astype(np.float32) / 255.0
image = np.expand_dims(image, axis=0)
return image
def process_images(payload):
tflite_model = OpenAiClipModel(payload=payload).build_model()
return tflite_model
# Function to add a new tag category
def add_tag_category(tag_category):
# Normalize and validate tag category
tag_category = tag_category.strip()
if not tag_category:
return "Please enter a valid tag category", None
# Initialize the tag category if it doesn't exist
if tag_category not in tagged_images:
tagged_images[tag_category] = []
return f"Tag Category '{tag_category}' Added", gr.File(visible=True), ""
# Function to get updated tag category choices
def get_tag_category_choices():
return gr.Dropdown(choices=list(tagged_images.keys()))
def show_category_images(tag_category):
if not tag_category:
return None, None
if tag_category in tagged_images:
return (
gr.Gallery(value=tagged_images[tag_category]),
tagged_images[tag_category]
)
return None, None
# Function to upload images for a specific tag category
def upload_images_for_tag(tag_category, image_files):
# Ensure the tag category exists
if tag_category not in tagged_images:
return "Tag category not found. Add the tag category first.", None, None
# Replace existing images with new ones for the tag category
tagged_images[tag_category] = [file.name for file in image_files] # Replace instead of append
return (
f"Added {len(image_files)} images to '{tag_category}'",
gr.Gallery(value=[file.name for file in image_files]),
tagged_images
)
# Function to export tagged images
def export_tagged_images():
return tagged_images
def clear_uploaded_images():
return None, None
# Gradio UI
with gr.Blocks(theme=DarkTheme()) as demo:
gr.Markdown("# Clip -> Tflite - TOPS Infosolutions Pvt Ltd")
gr.Markdown("Add Classification Tags")
# Tag Category Input
with gr.Row():
tag_category_input = gr.Textbox(
label="Enter Tag Category",
placeholder="e.g., Smartphone, Laptop, Tablet"
)
# add_tag_category_btn = gr.Button("Add Tag Category")
tag_category_status = gr.Textbox(label="Action Status", interactive=False)
gr.Markdown("Images")
# Image Upload for Specific Tag
with gr.Row():
tag_category_selector = gr.Dropdown(label="Select Tag Category", choices=[])
image_upload = gr.File(
file_types=["image"],
file_count="multiple",
label="Upload Images",
visible=False
)
upload_images_btn = gr.Button("Upload Images for Category")
clear_upload_btn = gr.Button("Clear Upload")
# Image Gallery with smaller previews
image_gallery = gr.Gallery(
label="Uploaded Images",
columns=[6], # Show 4 images per row
rows=[1], # Show 2 rows
height="20",
object_fit="contain", # Maintain aspect ratio
preview=False,
show_label=False,
elem_classes="small-gallery" # Custom CSS class for additional styling
)
# Export Section
with gr.Row():
# export_btn = gr.Button("Export Tagged Images")
export_output = gr.JSON(label="Exported Tagged Images")
with gr.Row():
submit_btn = gr.Button("Process Images")
with gr.Row():
download_button_tflite = gr.File(
label="Download Tflite Model",
file_count="single",
interactive=False,
type="filepath"
)
with gr.Tab("Test Model"):
with gr.Row():
with gr.Column():
test_image = gr.Image(
label="Upload Image to Test",
type="numpy"
)
test_button = gr.Button("Test Image")
with gr.Column():
output_text = gr.Textbox(
label="Prediction Results",
lines=6,
interactive=False
)
test_button.click(
fn=test_model,
inputs=[test_image],
outputs=[output_text]
)
submit_btn.click(
fn=process_images,
inputs=[export_output],
outputs=[download_button_tflite]
)
# Add custom CSS for smaller gallery images
demo.load(js="""
function() {
const style = document.createElement('style');
style.textContent = `
.small-gallery img {
max-height: 150px !important;
width: auto !important;
object-fit: contain !important;
}
.small-gallery .grid-container {
gap: 10px !important;
}
`;
document.head.appendChild(style);
}
""")
# Functionality Connections
# Add both button click and Enter key press handlers
# add_tag_category_btn.click(
# add_tag_category,
# tag_category_input,
# [tag_category_status, image_upload, tag_category_input]
# ).then(
# get_tag_category_choices,
# None,
# tag_category_selector
# )
# Add Enter key press handler
tag_category_input.submit(
add_tag_category,
tag_category_input,
[tag_category_status, image_upload, tag_category_input]
).then(
get_tag_category_choices,
None,
tag_category_selector
)
tag_category_selector.change(
show_category_images,
tag_category_selector,
[image_gallery, image_upload]
)
upload_images_btn.click(
upload_images_for_tag,
[tag_category_selector, image_upload],
[tag_category_status, image_gallery, export_output]
)
clear_upload_btn.click(
clear_uploaded_images,
[],
[image_upload, image_gallery]
)
# export_btn.click(export_tagged_images, None, export_output)
# Launch the app
demo.launch()