zhijiang commited on
Commit
e52d94b
·
1 Parent(s): 89621bb

improve the model selection

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -5,7 +5,7 @@ pp_en = pipeline("question-answering",model="deepset/roberta-base-squad2")
5
  pp_ch = pipeline("question-answering",model="luhua/chinese_pretrain_mrc_roberta_wwm_ext_large")
6
 
7
  def qa_fn(ask,ctxt,model):
8
- pp = (pp_en if model=="deepset" else pp_ch);
9
  ret = pp(context=ctxt, question=ask);
10
  ret['entity']='Answer';
11
  return {"text":ctxt,"entities":[ret]}, ret['answer'], ret['score']
@@ -13,16 +13,16 @@ def qa_fn(ask,ctxt,model):
13
  # 一种是list of dict ,一种是list of tuple. 详细用法参考https://gradio.app/named_entity_recognition/吧
14
 
15
  samples= [
16
- ["乔治的哥哥叫什么名字?","我是小猪佩奇,我是乔治的哥哥,我家住在北京","deepset"],
17
- ["图书馆主页的网址是多少啊?","读者进入图书馆主页(http://lib.tjut.edu.cn)后,点击文献传递菜单,即可查看文献传递的具体流程步骤","mrc"],
18
  ];
19
  introStr = "用于演示使用人工智能自动寻找问题答案,这将是一种更加高效便捷的新型信息检索方式。";
20
  titleStr = "智能问答演示程序";
21
 
22
  demo = gr.Interface(qa_fn,
23
  inputs=[gr.Textbox(label="Question",placeholder='请输入问题'),
24
- gr.Textbox(label="Contexkht",lines=10,placeholder="请输入一段文本"),
25
- gr.Radio(["deepset","mrc"],label="Select Model", value="deepset"),
26
  ],
27
  outputs=[gr.HighlightedText(label='答案位置'),gr.Textbox(label="答案"),gr.Number(label="Score")],
28
  examples=samples,
 
5
  pp_ch = pipeline("question-answering",model="luhua/chinese_pretrain_mrc_roberta_wwm_ext_large")
6
 
7
  def qa_fn(ask,ctxt,model):
8
+ pp = (pp_en if model=="english" else pp_ch);
9
  ret = pp(context=ctxt, question=ask);
10
  ret['entity']='Answer';
11
  return {"text":ctxt,"entities":[ret]}, ret['answer'], ret['score']
 
13
  # 一种是list of dict ,一种是list of tuple. 详细用法参考https://gradio.app/named_entity_recognition/吧
14
 
15
  samples= [
16
+ ["乔治的哥哥叫什么名字?","我是小猪佩奇,我是乔治的哥哥,我家住在北京","english"],
17
+ ["图书馆主页的网址是多少啊?","读者进入图书馆主页(http://lib.tjut.edu.cn)后,点击文献传递菜单,即可查看文献传递的具体流程步骤","chinese"],
18
  ];
19
  introStr = "用于演示使用人工智能自动寻找问题答案,这将是一种更加高效便捷的新型信息检索方式。";
20
  titleStr = "智能问答演示程序";
21
 
22
  demo = gr.Interface(qa_fn,
23
  inputs=[gr.Textbox(label="Question",placeholder='请输入问题'),
24
+ gr.Textbox(label="Context",lines=10,placeholder="请输入一段文本"),
25
+ gr.Radio(["english","chinese"],label="Select a Model", value="english"),
26
  ],
27
  outputs=[gr.HighlightedText(label='答案位置'),gr.Textbox(label="答案"),gr.Number(label="Score")],
28
  examples=samples,