#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 Nagoya University (Wen-Chin Huang) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """E2E VC training / decoding functions.""" import copy import json import logging import math import os import time import chainer import kaldiio import numpy as np import torch from chainer import training from chainer.training import extensions from espnet.asr.asr_utils import get_model_conf from espnet.asr.asr_utils import snapshot_object from espnet.asr.asr_utils import torch_load from espnet.asr.asr_utils import torch_resume from espnet.asr.asr_utils import torch_snapshot from espnet.asr.pytorch_backend.asr_init import load_trained_modules from espnet.nets.pytorch_backend.nets_utils import pad_list from espnet.nets.tts_interface import TTSInterface from espnet.utils.dataset import ChainerDataLoader from espnet.utils.dataset import TransformDataset from espnet.utils.dynamic_import import dynamic_import from espnet.utils.io_utils import LoadInputsAndTargets from espnet.utils.training.batchfy import make_batchset from espnet.utils.training.evaluator import BaseEvaluator from espnet.utils.deterministic_utils import set_deterministic_pytorch from espnet.utils.training.train_utils import check_early_stop from espnet.utils.training.train_utils import set_early_stop from espnet.utils.training.iterators import ShufflingEnabler import matplotlib from espnet.utils.training.tensorboard_logger import TensorboardLogger from tensorboardX import SummaryWriter matplotlib.use("Agg") class CustomEvaluator(BaseEvaluator): """Custom evaluator.""" def __init__(self, model, iterator, target, device): """Initilize module. Args: model (torch.nn.Module): Pytorch model instance. iterator (chainer.dataset.Iterator): Iterator for validation. target (chainer.Chain): Dummy chain instance. device (torch.device): The device to be used in evaluation. """ super(CustomEvaluator, self).__init__(iterator, target) self.model = model self.device = device # The core part of the update routine can be customized by overriding. def evaluate(self): """Evaluate over validation iterator.""" iterator = self._iterators["main"] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, "reset"): iterator.reset() it = iterator else: it = copy.copy(iterator) summary = chainer.reporter.DictSummary() self.model.eval() with torch.no_grad(): for batch in it: if isinstance(batch, tuple): x = tuple(arr.to(self.device) for arr in batch) else: x = batch for key in x.keys(): x[key] = x[key].to(self.device) observation = {} with chainer.reporter.report_scope(observation): # convert to torch tensor if isinstance(x, tuple): self.model(*x) else: self.model(**x) summary.add(observation) self.model.train() return summary.compute_mean() class CustomUpdater(training.StandardUpdater): """Custom updater.""" def __init__(self, model, grad_clip, iterator, optimizer, device, accum_grad=1): """Initilize module. Args: model (torch.nn.Module) model: Pytorch model instance. grad_clip (float) grad_clip : The gradient clipping value. iterator (chainer.dataset.Iterator): Iterator for training. optimizer (torch.optim.Optimizer) : Pytorch optimizer instance. device (torch.device): The device to be used in training. """ super(CustomUpdater, self).__init__(iterator, optimizer) self.model = model self.grad_clip = grad_clip self.device = device self.clip_grad_norm = torch.nn.utils.clip_grad_norm_ self.accum_grad = accum_grad self.forward_count = 0 # The core part of the update routine can be customized by overriding. def update_core(self): """Update model one step.""" # When we pass one iterator and optimizer to StandardUpdater.__init__, # they are automatically named 'main'. train_iter = self.get_iterator("main") optimizer = self.get_optimizer("main") # Get the next batch (a list of json files) batch = train_iter.next() if isinstance(batch, tuple): x = tuple(arr.to(self.device) for arr in batch) else: x = batch for key in x.keys(): x[key] = x[key].to(self.device) # compute loss and gradient if isinstance(x, tuple): loss = self.model(*x).mean() / self.accum_grad else: loss = self.model(**x).mean() / self.accum_grad loss.backward() # update parameters self.forward_count += 1 if self.forward_count != self.accum_grad: return self.forward_count = 0 # compute the gradient norm to check if it is normal or not grad_norm = self.clip_grad_norm(self.model.parameters(), self.grad_clip) logging.debug("grad norm={}".format(grad_norm)) if math.isnan(grad_norm): logging.warning("grad norm is nan. Do not update model.") else: optimizer.step() optimizer.zero_grad() def update(self): """Run update function.""" self.update_core() if self.forward_count == 0: self.iteration += 1 class CustomConverter(object): """Custom converter.""" def __init__(self): """Initilize module.""" # NOTE: keep as class for future development pass def __call__(self, batch, device=torch.device("cpu")): """Convert a given batch. Args: batch (list): List of ndarrays. device (torch.device): The device to be send. Returns: dict: Dict of converted tensors. Examples: >>> batch = [([np.arange(5), np.arange(3)], [np.random.randn(8, 2), np.random.randn(4, 2)], None, None)] >>> conveter = CustomConverter() >>> conveter(batch, torch.device("cpu")) {'xs': tensor([[0, 1, 2, 3, 4], [0, 1, 2, 0, 0]]), 'ilens': tensor([5, 3]), 'ys': tensor([[[-0.4197, -1.1157], [-1.5837, -0.4299], [-2.0491, 0.9215], [-2.4326, 0.8891], [ 1.2323, 1.7388], [-0.3228, 0.6656], [-0.6025, 1.3693], [-1.0778, 1.3447]], [[ 0.1768, -0.3119], [ 0.4386, 2.5354], [-1.2181, -0.5918], [-0.6858, -0.8843], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000], [ 0.0000, 0.0000]]]), 'labels': tensor([[0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 1., 1., 1., 1., 1.]]), 'olens': tensor([8, 4])} """ # batch should be located in list assert len(batch) == 1 xs, ys, spembs, extras = batch[0] # get list of lengths (must be tensor for DataParallel) ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).long().to(device) olens = torch.from_numpy(np.array([y.shape[0] for y in ys])).long().to(device) # perform padding and conversion to tensor xs = pad_list([torch.from_numpy(x).float() for x in xs], 0).to(device) ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device) # make labels for stop prediction labels = ys.new_zeros(ys.size(0), ys.size(1)) for i, l in enumerate(olens): labels[i, l - 1 :] = 1.0 # prepare dict new_batch = { "xs": xs, "ilens": ilens, "ys": ys, "labels": labels, "olens": olens, } # load speaker embedding if spembs is not None: spembs = torch.from_numpy(np.array(spembs)).float() new_batch["spembs"] = spembs.to(device) # load second target if extras is not None: extras = pad_list([torch.from_numpy(extra).float() for extra in extras], 0) new_batch["extras"] = extras.to(device) return new_batch def train(args): """Train E2E VC model.""" set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning("cuda is not available") # get input and output dimension info with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] utts = list(valid_json.keys()) # In TTS, this is reversed, but not in VC. See `espnet.utils.training.batchfy` idim = int(valid_json[utts[0]]["input"][0]["shape"][1]) odim = int(valid_json[utts[0]]["output"][0]["shape"][1]) logging.info("#input dims : " + str(idim)) logging.info("#output dims: " + str(odim)) # get extra input and output dimenstion if args.use_speaker_embedding: args.spk_embed_dim = int(valid_json[utts[0]]["input"][1]["shape"][0]) else: args.spk_embed_dim = None if args.use_second_target: args.spc_dim = int(valid_json[utts[0]]["input"][1]["shape"][1]) else: args.spc_dim = None # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to" + model_conf) f.write( json.dumps( (idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True ).encode("utf_8") ) for key in sorted(vars(args).keys()): logging.info("ARGS: " + key + ": " + str(vars(args)[key])) # specify model architecture if args.enc_init is not None or args.dec_init is not None: model = load_trained_modules(idim, odim, args, TTSInterface) else: model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, TTSInterface) logging.info(model) reporter = model.reporter # freeze modules, if specified if args.freeze_mods: for mod, param in model.named_parameters(): if any(mod.startswith(key) for key in args.freeze_mods): logging.info("freezing %s" % mod) param.requires_grad = False for mod, param in model.named_parameters(): if not param.requires_grad: logging.info("Frozen module %s" % mod) # check the use of multi-gpu if args.ngpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu))) if args.batch_size != 0: logging.warning( "batch size is automatically increased (%d -> %d)" % (args.batch_size, args.batch_size * args.ngpu) ) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) logging.warning( "num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), sum(p.numel() for p in model.parameters() if p.requires_grad) * 100.0 / sum(p.numel() for p in model.parameters()), ) ) # Setup an optimizer if args.opt == "adam": optimizer = torch.optim.Adam( model.parameters(), args.lr, eps=args.eps, weight_decay=args.weight_decay ) elif args.opt == "noam": from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt( model, args.adim, args.transformer_warmup_steps, args.transformer_lr ) elif args.opt == "lamb": from pytorch_lamb import Lamb optimizer = Lamb( model.parameters(), lr=args.lr, weight_decay=0.01, betas=(0.9, 0.999) ) else: raise NotImplementedError("unknown optimizer: " + args.opt) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # read json data with open(args.train_json, "rb") as f: train_json = json.load(f)["utts"] with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 if use_sortagrad: args.batch_sort_key = "input" # make minibatch list (variable length) train_batchset = make_batchset( train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=False, iaxis=0, oaxis=0, ) valid_batchset = make_batchset( valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, batch_sort_key=args.batch_sort_key, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, swap_io=False, iaxis=0, oaxis=0, ) load_tr = LoadInputsAndTargets( mode="vc", use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={"train": True}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) load_cv = LoadInputsAndTargets( mode="vc", use_speaker_embedding=args.use_speaker_embedding, use_second_target=args.use_second_target, preprocess_conf=args.preprocess_conf, preprocess_args={"train": False}, # Switch the mode of preprocessing keep_all_data_on_mem=args.keep_all_data_on_mem, ) converter = CustomConverter() # hack to make batchsize argument as 1 # actual bathsize is included in a list train_iter = { "main": ChainerDataLoader( dataset=TransformDataset( train_batchset, lambda data: converter([load_tr(data)]) ), batch_size=1, num_workers=args.num_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], ) } valid_iter = { "main": ChainerDataLoader( dataset=TransformDataset( valid_batchset, lambda data: converter([load_cv(data)]) ), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.num_iter_processes, ) } # Set up a trainer updater = CustomUpdater( model, args.grad_clip, train_iter, optimizer, device, args.accum_grad ) trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir) # Resume from a snapshot if args.resume: logging.info("resumed from %s" % args.resume) torch_resume(args.resume, trainer) # set intervals eval_interval = (args.eval_interval_epochs, "epoch") save_interval = (args.save_interval_epochs, "epoch") report_interval = (args.report_interval_iters, "iteration") # Evaluate the model with the test dataset for each epoch trainer.extend( CustomEvaluator(model, valid_iter, reporter, device), trigger=eval_interval ) # Save snapshot for each epoch trainer.extend(torch_snapshot(), trigger=save_interval) # Save best models trainer.extend( snapshot_object(model, "model.loss.best"), trigger=training.triggers.MinValueTrigger( "validation/main/loss", trigger=eval_interval ), ) # Save attention figure for each epoch if args.num_save_attention > 0: data = sorted( list(valid_json.items())[: args.num_save_attention], key=lambda x: int(x[1]["input"][0]["shape"][1]), reverse=True, ) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, reverse=True, ) trainer.extend(att_reporter, trigger=eval_interval) else: att_reporter = None # Make a plot for training and validation values if hasattr(model, "module"): base_plot_keys = model.module.base_plot_keys else: base_plot_keys = model.base_plot_keys plot_keys = [] for key in base_plot_keys: plot_key = ["main/" + key, "validation/main/" + key] trainer.extend( extensions.PlotReport(plot_key, "epoch", file_name=key + ".png"), trigger=eval_interval, ) plot_keys += plot_key trainer.extend( extensions.PlotReport(plot_keys, "epoch", file_name="all_loss.png"), trigger=eval_interval, ) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=report_interval)) report_keys = ["epoch", "iteration", "elapsed_time"] + plot_keys trainer.extend(extensions.PrintReport(report_keys), trigger=report_interval) trainer.extend(extensions.ProgressBar(), trigger=report_interval) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": writer = SummaryWriter(args.tensorboard_dir) trainer.extend(TensorboardLogger(writer, att_reporter), trigger=report_interval) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"), ) # Run the training trainer.run() check_early_stop(trainer, args.epochs) @torch.no_grad() def decode(args): """Decode with E2E VC model.""" set_deterministic_pytorch(args) # read training config idim, odim, train_args = get_model_conf(args.model, args.model_conf) # show arguments for key in sorted(vars(args).keys()): logging.info("args: " + key + ": " + str(vars(args)[key])) # define model model_class = dynamic_import(train_args.model_module) model = model_class(idim, odim, train_args) assert isinstance(model, TTSInterface) logging.info(model) # load trained model parameters logging.info("reading model parameters from " + args.model) torch_load(args.model, model) model.eval() # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # read json data with open(args.json, "rb") as f: js = json.load(f)["utts"] # check directory outdir = os.path.dirname(args.out) if len(outdir) != 0 and not os.path.exists(outdir): os.makedirs(outdir) load_inputs_and_targets = LoadInputsAndTargets( mode="vc", load_output=False, sort_in_input_length=False, use_speaker_embedding=train_args.use_speaker_embedding, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, # Switch the mode of preprocessing ) # define function for plot prob and att_ws def _plot_and_save(array, figname, figsize=(6, 4), dpi=150): import matplotlib.pyplot as plt shape = array.shape if len(shape) == 1: # for eos probability plt.figure(figsize=figsize, dpi=dpi) plt.plot(array) plt.xlabel("Frame") plt.ylabel("Probability") plt.ylim([0, 1]) elif len(shape) == 2: # for tacotron 2 attention weights, whose shape is (out_length, in_length) plt.figure(figsize=figsize, dpi=dpi) plt.imshow(array, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") elif len(shape) == 4: # for transformer attention weights, # whose shape is (#leyers, #heads, out_length, in_length) plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi) for idx1, xs in enumerate(array): for idx2, x in enumerate(xs, 1): plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2) plt.imshow(x, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") else: raise NotImplementedError("Support only from 1D to 4D array.") plt.tight_layout() if not os.path.exists(os.path.dirname(figname)): # NOTE: exist_ok = True is needed for parallel process decoding os.makedirs(os.path.dirname(figname), exist_ok=True) plt.savefig(figname) plt.close() # define function to calculate focus rate # (see section 3.3 in https://arxiv.org/abs/1905.09263) def _calculate_focus_rete(att_ws): if att_ws is None: # fastspeech case -> None return 1.0 elif len(att_ws.shape) == 2: # tacotron 2 case -> (L, T) return float(att_ws.max(dim=-1)[0].mean()) elif len(att_ws.shape) == 4: # transformer case -> (#layers, #heads, L, T) return float(att_ws.max(dim=-1)[0].mean(dim=-1).max()) else: raise ValueError("att_ws should be 2 or 4 dimensional tensor.") # define function to convert attention to duration def _convert_att_to_duration(att_ws): if len(att_ws.shape) == 2: # tacotron 2 case -> (L, T) pass elif len(att_ws.shape) == 4: # transformer case -> (#layers, #heads, L, T) # get the most diagonal head according to focus rate att_ws = torch.cat( [att_w for att_w in att_ws], dim=0 ) # (#heads * #layers, L, T) diagonal_scores = att_ws.max(dim=-1)[0].mean(dim=-1) # (#heads * #layers,) diagonal_head_idx = diagonal_scores.argmax() att_ws = att_ws[diagonal_head_idx] # (L, T) else: raise ValueError("att_ws should be 2 or 4 dimensional tensor.") # calculate duration from 2d attention weight durations = torch.stack( [att_ws.argmax(-1).eq(i).sum() for i in range(att_ws.shape[1])] ) return durations.view(-1, 1).float() # define writer instances feat_writer = kaldiio.WriteHelper("ark,scp:{o}.ark,{o}.scp".format(o=args.out)) if args.save_durations: dur_writer = kaldiio.WriteHelper( "ark,scp:{o}.ark,{o}.scp".format(o=args.out.replace("feats", "durations")) ) if args.save_focus_rates: fr_writer = kaldiio.WriteHelper( "ark,scp:{o}.ark,{o}.scp".format(o=args.out.replace("feats", "focus_rates")) ) # start decoding for idx, utt_id in enumerate(js.keys()): # setup inputs batch = [(utt_id, js[utt_id])] data = load_inputs_and_targets(batch) x = torch.FloatTensor(data[0][0]).to(device) spemb = None if train_args.use_speaker_embedding: spemb = torch.FloatTensor(data[1][0]).to(device) # decode and write start_time = time.time() outs, probs, att_ws = model.inference(x, args, spemb=spemb) logging.info( "inference speed = %.1f frames / sec." % (int(outs.size(0)) / (time.time() - start_time)) ) if outs.size(0) == x.size(0) * args.maxlenratio: logging.warning("output length reaches maximum length (%s)." % utt_id) focus_rate = _calculate_focus_rete(att_ws) logging.info( "(%d/%d) %s (size: %d->%d, focus rate: %.3f)" % (idx + 1, len(js.keys()), utt_id, x.size(0), outs.size(0), focus_rate) ) feat_writer[utt_id] = outs.cpu().numpy() if args.save_durations: ds = _convert_att_to_duration(att_ws) dur_writer[utt_id] = ds.cpu().numpy() if args.save_focus_rates: fr_writer[utt_id] = np.array(focus_rate).reshape(1, 1) # plot and save prob and att_ws if probs is not None: _plot_and_save( probs.cpu().numpy(), os.path.dirname(args.out) + "/probs/%s_prob.png" % utt_id, ) if att_ws is not None: _plot_and_save( att_ws.cpu().numpy(), os.path.dirname(args.out) + "/att_ws/%s_att_ws.png" % utt_id, ) # close file object feat_writer.close() if args.save_durations: dur_writer.close() if args.save_focus_rates: fr_writer.close()