from chainer.training.extensions import Evaluator from espnet.utils.training.tensorboard_logger import TensorboardLogger class BaseEvaluator(Evaluator): """Base Evaluator in ESPnet""" def __call__(self, trainer=None): ret = super().__call__(trainer) try: if trainer is not None: # force tensorboard to report evaluation log tb_logger = trainer.get_extension(TensorboardLogger.default_name) tb_logger(trainer) except ValueError: pass return ret