|
"""Language model interface.""" |
|
|
|
import argparse |
|
|
|
from espnet.nets.scorer_interface import ScorerInterface |
|
from espnet.utils.dynamic_import import dynamic_import |
|
from espnet.utils.fill_missing_args import fill_missing_args |
|
|
|
|
|
class LMInterface(ScorerInterface): |
|
"""LM Interface for ESPnet model implementation.""" |
|
|
|
@staticmethod |
|
def add_arguments(parser): |
|
"""Add arguments to command line argument parser.""" |
|
return parser |
|
|
|
@classmethod |
|
def build(cls, n_vocab: int, **kwargs): |
|
"""Initialize this class with python-level args. |
|
|
|
Args: |
|
idim (int): The number of vocabulary. |
|
|
|
Returns: |
|
LMinterface: A new instance of LMInterface. |
|
|
|
""" |
|
|
|
from espnet.bin.lm_train import get_parser |
|
|
|
def wrap(parser): |
|
return get_parser(parser, required=False) |
|
|
|
args = argparse.Namespace(**kwargs) |
|
args = fill_missing_args(args, wrap) |
|
args = fill_missing_args(args, cls.add_arguments) |
|
return cls(n_vocab, args) |
|
|
|
def forward(self, x, t): |
|
"""Compute LM loss value from buffer sequences. |
|
|
|
Args: |
|
x (torch.Tensor): Input ids. (batch, len) |
|
t (torch.Tensor): Target ids. (batch, len) |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of |
|
loss to backward (scalar), |
|
negative log-likelihood of t: -log p(t) (scalar) and |
|
the number of elements in x (scalar) |
|
|
|
Notes: |
|
The last two return values are used |
|
in perplexity: p(t)^{-n} = exp(-log p(t) / n) |
|
|
|
""" |
|
raise NotImplementedError("forward method is not implemented") |
|
|
|
|
|
predefined_lms = { |
|
"pytorch": { |
|
"default": "espnet.nets.pytorch_backend.lm.default:DefaultRNNLM", |
|
"seq_rnn": "espnet.nets.pytorch_backend.lm.seq_rnn:SequentialRNNLM", |
|
"transformer": "espnet.nets.pytorch_backend.lm.transformer:TransformerLM", |
|
}, |
|
"chainer": {"default": "espnet.lm.chainer_backend.lm:DefaultRNNLM"}, |
|
} |
|
|
|
|
|
def dynamic_import_lm(module, backend): |
|
"""Import LM class dynamically. |
|
|
|
Args: |
|
module (str): module_name:class_name or alias in `predefined_lms` |
|
backend (str): NN backend. e.g., pytorch, chainer |
|
|
|
Returns: |
|
type: LM class |
|
|
|
""" |
|
model_class = dynamic_import(module, predefined_lms.get(backend, dict())) |
|
assert issubclass( |
|
model_class, LMInterface |
|
), f"{module} does not implement LMInterface" |
|
return model_class |
|
|