tobiasc's picture
Initial commit
ad16788
#!/usr/bin/env python3
# encoding: utf-8
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Training/decoding definition for the text translation task."""
import json
import logging
import os
import sys
from chainer import training
from chainer.training import extensions
import numpy as np
from tensorboardX import SummaryWriter
import torch
from espnet.asr.asr_utils import adadelta_eps_decay
from espnet.asr.asr_utils import adam_lr_decay
from espnet.asr.asr_utils import add_results_to_json
from espnet.asr.asr_utils import CompareValueTrigger
from espnet.asr.asr_utils import restore_snapshot
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.nets.mt_interface import MTInterface
from espnet.nets.pytorch_backend.e2e_asr import pad_list
from espnet.utils.dataset import ChainerDataLoader
from espnet.utils.dataset import TransformDataset
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.tensorboard_logger import TensorboardLogger
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop
from espnet.asr.pytorch_backend.asr import CustomEvaluator
from espnet.asr.pytorch_backend.asr import CustomUpdater
from espnet.asr.pytorch_backend.asr import load_trained_model
import matplotlib
matplotlib.use("Agg")
if sys.version_info[0] == 2:
from itertools import izip_longest as zip_longest
else:
from itertools import zip_longest as zip_longest
class CustomConverter(object):
"""Custom batch converter for Pytorch."""
def __init__(self):
"""Construct a CustomConverter object."""
self.ignore_id = -1
self.pad = 0
# NOTE: we reserve index:0 for <pad> although this is reserved for a blank class
# in ASR. However,
# blank labels are not used in NMT. To keep the vocabulary size,
# we use index:0 for padding instead of adding one more class.
def __call__(self, batch, device=torch.device("cpu")):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
device (torch.device): The device to send to.
Returns:
tuple(torch.Tensor, torch.Tensor, torch.Tensor)
"""
# batch should be located in list
assert len(batch) == 1
xs, ys = batch[0]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
xs_pad = pad_list([torch.from_numpy(x).long() for x in xs], self.pad).to(device)
ilens = torch.from_numpy(ilens).to(device)
ys_pad = pad_list([torch.from_numpy(y).long() for y in ys], self.ignore_id).to(
device
)
return xs_pad, ilens, ys_pad
def train(args):
"""Train with the given args.
Args:
args (namespace): The program arguments.
"""
set_deterministic_pytorch(args)
# check cuda availability
if not torch.cuda.is_available():
logging.warning("cuda is not available")
# get input and output dimension info
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
utts = list(valid_json.keys())
idim = int(valid_json[utts[0]]["output"][1]["shape"][1])
odim = int(valid_json[utts[0]]["output"][0]["shape"][1])
logging.info("#input dims : " + str(idim))
logging.info("#output dims: " + str(odim))
# specify model architecture
model_class = dynamic_import(args.model_module)
model = model_class(idim, odim, args)
assert isinstance(model, MTInterface)
# write model config
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
model_conf = args.outdir + "/model.json"
with open(model_conf, "wb") as f:
logging.info("writing a model config file to " + model_conf)
f.write(
json.dumps(
(idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)
for key in sorted(vars(args).keys()):
logging.info("ARGS: " + key + ": " + str(vars(args)[key]))
reporter = model.reporter
# check the use of multi-gpu
if args.ngpu > 1:
if args.batch_size != 0:
logging.warning(
"batch size is automatically increased (%d -> %d)"
% (args.batch_size, args.batch_size * args.ngpu)
)
args.batch_size *= args.ngpu
# set torch device
device = torch.device("cuda" if args.ngpu > 0 else "cpu")
if args.train_dtype in ("float16", "float32", "float64"):
dtype = getattr(torch, args.train_dtype)
else:
dtype = torch.float32
model = model.to(device=device, dtype=dtype)
logging.warning(
"num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
sum(p.numel() for p in model.parameters() if p.requires_grad)
* 100.0
/ sum(p.numel() for p in model.parameters()),
)
)
# Setup an optimizer
if args.opt == "adadelta":
optimizer = torch.optim.Adadelta(
model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay
)
elif args.opt == "adam":
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
elif args.opt == "noam":
from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt
optimizer = get_std_opt(
model.parameters(),
args.adim,
args.transformer_warmup_steps,
args.transformer_lr,
)
else:
raise NotImplementedError("unknown optimizer: " + args.opt)
# setup apex.amp
if args.train_dtype in ("O0", "O1", "O2", "O3"):
try:
from apex import amp
except ImportError as e:
logging.error(
f"You need to install apex for --train-dtype {args.train_dtype}. "
"See https://github.com/NVIDIA/apex#linux"
)
raise e
if args.opt == "noam":
model, optimizer.optimizer = amp.initialize(
model, optimizer.optimizer, opt_level=args.train_dtype
)
else:
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.train_dtype
)
use_apex = True
else:
use_apex = False
# FIXME: TOO DIRTY HACK
setattr(optimizer, "target", reporter)
setattr(optimizer, "serialize", lambda s: reporter.serialize(s))
# Setup a converter
converter = CustomConverter()
# read json data
with open(args.train_json, "rb") as f:
train_json = json.load(f)["utts"]
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
# make minibatch list (variable length)
train = make_batchset(
train_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
shortest_first=use_sortagrad,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
mt=True,
iaxis=1,
oaxis=0,
)
valid = make_batchset(
valid_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
mt=True,
iaxis=1,
oaxis=0,
)
load_tr = LoadInputsAndTargets(mode="mt", load_output=True)
load_cv = LoadInputsAndTargets(mode="mt", load_output=True)
# hack to make batchsize argument as 1
# actual bathsize is included in a list
# default collate function converts numpy array to pytorch tensor
# we used an empty collate function instead which returns list
train_iter = ChainerDataLoader(
dataset=TransformDataset(train, lambda data: converter([load_tr(data)])),
batch_size=1,
num_workers=args.n_iter_processes,
shuffle=not use_sortagrad,
collate_fn=lambda x: x[0],
)
valid_iter = ChainerDataLoader(
dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])),
batch_size=1,
shuffle=False,
collate_fn=lambda x: x[0],
num_workers=args.n_iter_processes,
)
# Set up a trainer
updater = CustomUpdater(
model,
args.grad_clip,
{"main": train_iter},
optimizer,
device,
args.ngpu,
False,
args.accum_grad,
use_apex=use_apex,
)
trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir)
if use_sortagrad:
trainer.extend(
ShufflingEnabler([train_iter]),
trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"),
)
# Resume from a snapshot
if args.resume:
logging.info("resumed from %s" % args.resume)
torch_resume(args.resume, trainer)
# Evaluate the model with the test dataset for each epoch
if args.save_interval_iters > 0:
trainer.extend(
CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu),
trigger=(args.save_interval_iters, "iteration"),
)
else:
trainer.extend(
CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu)
)
# Save attention weight each epoch
if args.num_save_attention > 0:
# NOTE: sort it by output lengths
data = sorted(
list(valid_json.items())[: args.num_save_attention],
key=lambda x: int(x[1]["output"][0]["shape"][0]),
reverse=True,
)
if hasattr(model, "module"):
att_vis_fn = model.module.calculate_all_attentions
plot_class = model.module.attention_plot_class
else:
att_vis_fn = model.calculate_all_attentions
plot_class = model.attention_plot_class
att_reporter = plot_class(
att_vis_fn,
data,
args.outdir + "/att_ws",
converter=converter,
transform=load_cv,
device=device,
ikey="output",
iaxis=1,
)
trainer.extend(att_reporter, trigger=(1, "epoch"))
else:
att_reporter = None
# Make a plot for training and validation values
trainer.extend(
extensions.PlotReport(
["main/loss", "validation/main/loss"], "epoch", file_name="loss.png"
)
)
trainer.extend(
extensions.PlotReport(
["main/acc", "validation/main/acc"], "epoch", file_name="acc.png"
)
)
trainer.extend(
extensions.PlotReport(
["main/ppl", "validation/main/ppl"], "epoch", file_name="ppl.png"
)
)
trainer.extend(
extensions.PlotReport(
["main/bleu", "validation/main/bleu"], "epoch", file_name="bleu.png"
)
)
# Save best models
trainer.extend(
snapshot_object(model, "model.loss.best"),
trigger=training.triggers.MinValueTrigger("validation/main/loss"),
)
trainer.extend(
snapshot_object(model, "model.acc.best"),
trigger=training.triggers.MaxValueTrigger("validation/main/acc"),
)
# save snapshot which contains model and optimizer states
if args.save_interval_iters > 0:
trainer.extend(
torch_snapshot(filename="snapshot.iter.{.updater.iteration}"),
trigger=(args.save_interval_iters, "iteration"),
)
else:
trainer.extend(torch_snapshot(), trigger=(1, "epoch"))
# epsilon decay in the optimizer
if args.opt == "adadelta":
if args.criterion == "acc":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.acc.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
trainer.extend(
adadelta_eps_decay(args.eps_decay),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
elif args.criterion == "loss":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.loss.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
trainer.extend(
adadelta_eps_decay(args.eps_decay),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
elif args.opt == "adam":
if args.criterion == "acc":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.acc.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
trainer.extend(
adam_lr_decay(args.lr_decay),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
elif args.criterion == "loss":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.loss.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
trainer.extend(
adam_lr_decay(args.lr_decay),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
# Write a log of evaluation statistics for each epoch
trainer.extend(
extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))
)
report_keys = [
"epoch",
"iteration",
"main/loss",
"validation/main/loss",
"main/acc",
"validation/main/acc",
"main/ppl",
"validation/main/ppl",
"elapsed_time",
]
if args.opt == "adadelta":
trainer.extend(
extensions.observe_value(
"eps",
lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][
"eps"
],
),
trigger=(args.report_interval_iters, "iteration"),
)
report_keys.append("eps")
elif args.opt in ["adam", "noam"]:
trainer.extend(
extensions.observe_value(
"lr",
lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][
"lr"
],
),
trigger=(args.report_interval_iters, "iteration"),
)
report_keys.append("lr")
if args.report_bleu:
report_keys.append("main/bleu")
report_keys.append("validation/main/bleu")
trainer.extend(
extensions.PrintReport(report_keys),
trigger=(args.report_interval_iters, "iteration"),
)
trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))
set_early_stop(trainer, args)
if args.tensorboard_dir is not None and args.tensorboard_dir != "":
trainer.extend(
TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter),
trigger=(args.report_interval_iters, "iteration"),
)
# Run the training
trainer.run()
check_early_stop(trainer, args.epochs)
def trans(args):
"""Decode with the given args.
Args:
args (namespace): The program arguments.
"""
set_deterministic_pytorch(args)
model, train_args = load_trained_model(args.model)
assert isinstance(model, MTInterface)
model.trans_args = args
# gpu
if args.ngpu == 1:
gpu_id = list(range(args.ngpu))
logging.info("gpu id: " + str(gpu_id))
model.cuda()
# read json data
with open(args.trans_json, "rb") as f:
js = json.load(f)["utts"]
new_js = {}
# remove enmpy utterances
if train_args.multilingual:
js = {
k: v
for k, v in js.items()
if v["output"][0]["shape"][0] > 1 and v["output"][1]["shape"][0] > 1
}
else:
js = {
k: v
for k, v in js.items()
if v["output"][0]["shape"][0] > 0 and v["output"][1]["shape"][0] > 0
}
if args.batchsize == 0:
with torch.no_grad():
for idx, name in enumerate(js.keys(), 1):
logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
feat = [js[name]["output"][1]["tokenid"].split()]
nbest_hyps = model.translate(feat, args, train_args.char_list)
new_js[name] = add_results_to_json(
js[name], nbest_hyps, train_args.char_list
)
else:
def grouper(n, iterable, fillvalue=None):
kargs = [iter(iterable)] * n
return zip_longest(*kargs, fillvalue=fillvalue)
# sort data
keys = list(js.keys())
feat_lens = [js[key]["output"][1]["shape"][0] for key in keys]
sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
keys = [keys[i] for i in sorted_index]
with torch.no_grad():
for names in grouper(args.batchsize, keys, None):
names = [name for name in names if name]
feats = [
np.fromiter(
map(int, js[name]["output"][1]["tokenid"].split()),
dtype=np.int64,
)
for name in names
]
nbest_hyps = model.translate_batch(
feats,
args,
train_args.char_list,
)
for i, nbest_hyp in enumerate(nbest_hyps):
name = names[i]
new_js[name] = add_results_to_json(
js[name], nbest_hyp, train_args.char_list
)
with open(args.result_label, "wb") as f:
f.write(
json.dumps(
{"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)