File size: 15,177 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
from abc import ABC
from abc import abstractmethod
import collections
import copy
import functools
import logging
import numbers
import re
from typing import Any
from typing import Callable
from typing import Collection
from typing import Dict
from typing import Mapping
from typing import Tuple
from typing import Union
import h5py
import humanfriendly
import kaldiio
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
from typeguard import check_argument_types
from typeguard import check_return_type
from espnet2.fileio.npy_scp import NpyScpReader
from espnet2.fileio.rand_gen_dataset import FloatRandomGenerateDataset
from espnet2.fileio.rand_gen_dataset import IntRandomGenerateDataset
from espnet2.fileio.read_text import load_num_sequence_text
from espnet2.fileio.read_text import read_2column_text
from espnet2.fileio.rttm import RttmReader
from espnet2.fileio.sound_scp import SoundScpReader
from espnet2.utils.sized_dict import SizedDict
class AdapterForSoundScpReader(collections.abc.Mapping):
def __init__(self, loader, dtype=None):
assert check_argument_types()
self.loader = loader
self.dtype = dtype
self.rate = None
def keys(self):
return self.loader.keys()
def __len__(self):
return len(self.loader)
def __iter__(self):
return iter(self.loader)
def __getitem__(self, key: str) -> np.ndarray:
retval = self.loader[key]
if isinstance(retval, tuple):
assert len(retval) == 2, len(retval)
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
# sound scp case
rate, array = retval
elif isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
# Extended ark format case
array, rate = retval
else:
raise RuntimeError(
f"Unexpected type: {type(retval[0])}, {type(retval[1])}"
)
if self.rate is not None and self.rate != rate:
raise RuntimeError(
f"Sampling rates are mismatched: {self.rate} != {rate}"
)
self.rate = rate
# Multichannel wave fie
# array: (NSample, Channel) or (Nsample)
if self.dtype is not None:
array = array.astype(self.dtype)
else:
# Normal ark case
assert isinstance(retval, np.ndarray), type(retval)
array = retval
if self.dtype is not None:
array = array.astype(self.dtype)
assert isinstance(array, np.ndarray), type(array)
return array
class H5FileWrapper:
def __init__(self, path: str):
self.path = path
self.h5_file = h5py.File(path, "r")
def __repr__(self) -> str:
return str(self.h5_file)
def __len__(self) -> int:
return len(self.h5_file)
def __iter__(self):
return iter(self.h5_file)
def __getitem__(self, key) -> np.ndarray:
value = self.h5_file[key]
return value[()]
def sound_loader(path, float_dtype=None):
# The file is as follows:
# utterance_id_A /some/where/a.wav
# utterance_id_B /some/where/a.flac
# NOTE(kamo): SoundScpReader doesn't support pipe-fashion
# like Kaldi e.g. "cat a.wav |".
# NOTE(kamo): The audio signal is normalized to [-1,1] range.
loader = SoundScpReader(path, normalize=True, always_2d=False)
# SoundScpReader.__getitem__() returns Tuple[int, ndarray],
# but ndarray is desired, so Adapter class is inserted here
return AdapterForSoundScpReader(loader, float_dtype)
def kaldi_loader(path, float_dtype=None, max_cache_fd: int = 0):
loader = kaldiio.load_scp(path, max_cache_fd=max_cache_fd)
return AdapterForSoundScpReader(loader, float_dtype)
def rand_int_loader(filepath, loader_type):
# e.g. rand_int_3_10
try:
low, high = map(int, loader_type[len("rand_int_") :].split("_"))
except ValueError:
raise RuntimeError(f"e.g rand_int_3_10: but got {loader_type}")
return IntRandomGenerateDataset(filepath, low, high)
DATA_TYPES = {
"sound": dict(
func=sound_loader,
kwargs=["float_dtype"],
help="Audio format types which supported by sndfile wav, flac, etc."
"\n\n"
" utterance_id_a a.wav\n"
" utterance_id_b b.wav\n"
" ...",
),
"kaldi_ark": dict(
func=kaldi_loader,
kwargs=["max_cache_fd"],
help="Kaldi-ark file type."
"\n\n"
" utterance_id_A /some/where/a.ark:123\n"
" utterance_id_B /some/where/a.ark:456\n"
" ...",
),
"npy": dict(
func=NpyScpReader,
kwargs=[],
help="Npy file format."
"\n\n"
" utterance_id_A /some/where/a.npy\n"
" utterance_id_B /some/where/b.npy\n"
" ...",
),
"text_int": dict(
func=functools.partial(load_num_sequence_text, loader_type="text_int"),
kwargs=[],
help="A text file in which is written a sequence of interger numbers "
"separated by space."
"\n\n"
" utterance_id_A 12 0 1 3\n"
" utterance_id_B 3 3 1\n"
" ...",
),
"csv_int": dict(
func=functools.partial(load_num_sequence_text, loader_type="csv_int"),
kwargs=[],
help="A text file in which is written a sequence of interger numbers "
"separated by comma."
"\n\n"
" utterance_id_A 100,80\n"
" utterance_id_B 143,80\n"
" ...",
),
"text_float": dict(
func=functools.partial(load_num_sequence_text, loader_type="text_float"),
kwargs=[],
help="A text file in which is written a sequence of float numbers "
"separated by space."
"\n\n"
" utterance_id_A 12. 3.1 3.4 4.4\n"
" utterance_id_B 3. 3.12 1.1\n"
" ...",
),
"csv_float": dict(
func=functools.partial(load_num_sequence_text, loader_type="csv_float"),
kwargs=[],
help="A text file in which is written a sequence of float numbers "
"separated by comma."
"\n\n"
" utterance_id_A 12.,3.1,3.4,4.4\n"
" utterance_id_B 3.,3.12,1.1\n"
" ...",
),
"text": dict(
func=read_2column_text,
kwargs=[],
help="Return text as is. The text must be converted to ndarray "
"by 'preprocess'."
"\n\n"
" utterance_id_A hello world\n"
" utterance_id_B foo bar\n"
" ...",
),
"hdf5": dict(
func=H5FileWrapper,
kwargs=[],
help="A HDF5 file which contains arrays at the first level or the second level."
" >>> f = h5py.File('file.h5')\n"
" >>> array1 = f['utterance_id_A']\n"
" >>> array2 = f['utterance_id_B']\n",
),
"rand_float": dict(
func=FloatRandomGenerateDataset,
kwargs=[],
help="Generate random float-ndarray which has the given shapes "
"in the file."
"\n\n"
" utterance_id_A 3,4\n"
" utterance_id_B 10,4\n"
" ...",
),
"rand_int_\\d+_\\d+": dict(
func=rand_int_loader,
kwargs=["loader_type"],
help="e.g. 'rand_int_0_10'. Generate random int-ndarray which has the given "
"shapes in the path. "
"Give the lower and upper value by the file type. e.g. "
"rand_int_0_10 -> Generate integers from 0 to 10."
"\n\n"
" utterance_id_A 3,4\n"
" utterance_id_B 10,4\n"
" ...",
),
"rttm": dict(
func=RttmReader,
kwargs=[],
help="rttm file loader, currently support for speaker diarization"
"\n\n"
" SPEAKER file1 1 0 1023 <NA> <NA> spk1 <NA>"
" SPEAKER file1 2 4000 3023 <NA> <NA> spk2 <NA>"
" SPEAKER file1 3 500 4023 <NA> <NA> spk1 <NA>"
" END file1 <NA> 4023 <NA> <NA> <NA> <NA>"
" ...",
),
}
class AbsDataset(Dataset, ABC):
@abstractmethod
def has_name(self, name) -> bool:
raise NotImplementedError
@abstractmethod
def names(self) -> Tuple[str, ...]:
raise NotImplementedError
@abstractmethod
def __getitem__(self, uid) -> Tuple[Any, Dict[str, np.ndarray]]:
raise NotImplementedError
class ESPnetDataset(AbsDataset):
"""Pytorch Dataset class for ESPNet.
Examples:
>>> dataset = ESPnetDataset([('wav.scp', 'input', 'sound'),
... ('token_int', 'output', 'text_int')],
... )
... uttid, data = dataset['uttid']
{'input': per_utt_array, 'output': per_utt_array}
"""
def __init__(
self,
path_name_type_list: Collection[Tuple[str, str, str]],
preprocess: Callable[
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
] = None,
float_dtype: str = "float32",
int_dtype: str = "long",
max_cache_size: Union[float, int, str] = 0.0,
max_cache_fd: int = 0,
):
assert check_argument_types()
if len(path_name_type_list) == 0:
raise ValueError(
'1 or more elements are required for "path_name_type_list"'
)
path_name_type_list = copy.deepcopy(path_name_type_list)
self.preprocess = preprocess
self.float_dtype = float_dtype
self.int_dtype = int_dtype
self.max_cache_fd = max_cache_fd
self.loader_dict = {}
self.debug_info = {}
for path, name, _type in path_name_type_list:
if name in self.loader_dict:
raise RuntimeError(f'"{name}" is duplicated for data-key')
loader = self._build_loader(path, _type)
self.loader_dict[name] = loader
self.debug_info[name] = path, _type
if len(self.loader_dict[name]) == 0:
raise RuntimeError(f"{path} has no samples")
# TODO(kamo): Should check consistency of each utt-keys?
if isinstance(max_cache_size, str):
max_cache_size = humanfriendly.parse_size(max_cache_size)
self.max_cache_size = max_cache_size
if max_cache_size > 0:
self.cache = SizedDict(shared=True)
else:
self.cache = None
def _build_loader(
self, path: str, loader_type: str
) -> Mapping[str, Union[np.ndarray, torch.Tensor, str, numbers.Number]]:
"""Helper function to instantiate Loader.
Args:
path: The file path
loader_type: loader_type. sound, npy, text_int, text_float, etc
"""
for key, dic in DATA_TYPES.items():
# e.g. loader_type="sound"
# -> return DATA_TYPES["sound"]["func"](path)
if re.match(key, loader_type):
kwargs = {}
for key2 in dic["kwargs"]:
if key2 == "loader_type":
kwargs["loader_type"] = loader_type
elif key2 == "float_dtype":
kwargs["float_dtype"] = self.float_dtype
elif key2 == "int_dtype":
kwargs["int_dtype"] = self.int_dtype
elif key2 == "max_cache_fd":
kwargs["max_cache_fd"] = self.max_cache_fd
else:
raise RuntimeError(f"Not implemented keyword argument: {key2}")
func = dic["func"]
try:
return func(path, **kwargs)
except Exception:
if hasattr(func, "__name__"):
name = func.__name__
else:
name = str(func)
logging.error(f"An error happend with {name}({path})")
raise
else:
raise RuntimeError(f"Not supported: loader_type={loader_type}")
def has_name(self, name) -> bool:
return name in self.loader_dict
def names(self) -> Tuple[str, ...]:
return tuple(self.loader_dict)
def __iter__(self):
return iter(next(iter(self.loader_dict.values())))
def __repr__(self):
_mes = self.__class__.__name__
_mes += "("
for name, (path, _type) in self.debug_info.items():
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
_mes += f"\n preprocess: {self.preprocess})"
return _mes
def __getitem__(self, uid: Union[str, int]) -> Tuple[str, Dict[str, np.ndarray]]:
assert check_argument_types()
# Change integer-id to string-id
if isinstance(uid, int):
d = next(iter(self.loader_dict.values()))
uid = list(d)[uid]
if self.cache is not None and uid in self.cache:
data = self.cache[uid]
return uid, data
data = {}
# 1. Load data from each loaders
for name, loader in self.loader_dict.items():
try:
value = loader[uid]
if isinstance(value, (list, tuple)):
value = np.array(value)
if not isinstance(
value, (np.ndarray, torch.Tensor, str, numbers.Number)
):
raise TypeError(
f"Must be ndarray, torch.Tensor, str or Number: {type(value)}"
)
except Exception:
path, _type = self.debug_info[name]
logging.error(
f"Error happened with path={path}, type={_type}, id={uid}"
)
raise
# torch.Tensor is converted to ndarray
if isinstance(value, torch.Tensor):
value = value.numpy()
elif isinstance(value, numbers.Number):
value = np.array([value])
data[name] = value
# 2. [Option] Apply preprocessing
# e.g. espnet2.train.preprocessor:CommonPreprocessor
if self.preprocess is not None:
data = self.preprocess(uid, data)
# 3. Force data-precision
for name in data:
value = data[name]
if not isinstance(value, np.ndarray):
raise RuntimeError(
f"All values must be converted to np.ndarray object "
f'by preprocessing, but "{name}" is still {type(value)}.'
)
# Cast to desired type
if value.dtype.kind == "f":
value = value.astype(self.float_dtype)
elif value.dtype.kind == "i":
value = value.astype(self.int_dtype)
else:
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
data[name] = value
if self.cache is not None and self.cache.size < self.max_cache_size:
self.cache[uid] = data
retval = uid, data
assert check_return_type(retval)
return retval
|