File size: 26,325 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2020 Nagoya University (Wen-Chin Huang)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""E2E VC training / decoding functions."""
import copy
import json
import logging
import math
import os
import time
import chainer
import kaldiio
import numpy as np
import torch
from chainer import training
from chainer.training import extensions
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.asr.pytorch_backend.asr_init import load_trained_modules
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.dataset import ChainerDataLoader
from espnet.utils.dataset import TransformDataset
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.evaluator import BaseEvaluator
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop
from espnet.utils.training.iterators import ShufflingEnabler
import matplotlib
from espnet.utils.training.tensorboard_logger import TensorboardLogger
from tensorboardX import SummaryWriter
matplotlib.use("Agg")
class CustomEvaluator(BaseEvaluator):
"""Custom evaluator."""
def __init__(self, model, iterator, target, device):
"""Initilize module.
Args:
model (torch.nn.Module): Pytorch model instance.
iterator (chainer.dataset.Iterator): Iterator for validation.
target (chainer.Chain): Dummy chain instance.
device (torch.device): The device to be used in evaluation.
"""
super(CustomEvaluator, self).__init__(iterator, target)
self.model = model
self.device = device
# The core part of the update routine can be customized by overriding.
def evaluate(self):
"""Evaluate over validation iterator."""
iterator = self._iterators["main"]
if self.eval_hook:
self.eval_hook(self)
if hasattr(iterator, "reset"):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
summary = chainer.reporter.DictSummary()
self.model.eval()
with torch.no_grad():
for batch in it:
if isinstance(batch, tuple):
x = tuple(arr.to(self.device) for arr in batch)
else:
x = batch
for key in x.keys():
x[key] = x[key].to(self.device)
observation = {}
with chainer.reporter.report_scope(observation):
# convert to torch tensor
if isinstance(x, tuple):
self.model(*x)
else:
self.model(**x)
summary.add(observation)
self.model.train()
return summary.compute_mean()
class CustomUpdater(training.StandardUpdater):
"""Custom updater."""
def __init__(self, model, grad_clip, iterator, optimizer, device, accum_grad=1):
"""Initilize module.
Args:
model (torch.nn.Module) model: Pytorch model instance.
grad_clip (float) grad_clip : The gradient clipping value.
iterator (chainer.dataset.Iterator): Iterator for training.
optimizer (torch.optim.Optimizer) : Pytorch optimizer instance.
device (torch.device): The device to be used in training.
"""
super(CustomUpdater, self).__init__(iterator, optimizer)
self.model = model
self.grad_clip = grad_clip
self.device = device
self.clip_grad_norm = torch.nn.utils.clip_grad_norm_
self.accum_grad = accum_grad
self.forward_count = 0
# The core part of the update routine can be customized by overriding.
def update_core(self):
"""Update model one step."""
# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.
train_iter = self.get_iterator("main")
optimizer = self.get_optimizer("main")
# Get the next batch (a list of json files)
batch = train_iter.next()
if isinstance(batch, tuple):
x = tuple(arr.to(self.device) for arr in batch)
else:
x = batch
for key in x.keys():
x[key] = x[key].to(self.device)
# compute loss and gradient
if isinstance(x, tuple):
loss = self.model(*x).mean() / self.accum_grad
else:
loss = self.model(**x).mean() / self.accum_grad
loss.backward()
# update parameters
self.forward_count += 1
if self.forward_count != self.accum_grad:
return
self.forward_count = 0
# compute the gradient norm to check if it is normal or not
grad_norm = self.clip_grad_norm(self.model.parameters(), self.grad_clip)
logging.debug("grad norm={}".format(grad_norm))
if math.isnan(grad_norm):
logging.warning("grad norm is nan. Do not update model.")
else:
optimizer.step()
optimizer.zero_grad()
def update(self):
"""Run update function."""
self.update_core()
if self.forward_count == 0:
self.iteration += 1
class CustomConverter(object):
"""Custom converter."""
def __init__(self):
"""Initilize module."""
# NOTE: keep as class for future development
pass
def __call__(self, batch, device=torch.device("cpu")):
"""Convert a given batch.
Args:
batch (list): List of ndarrays.
device (torch.device): The device to be send.
Returns:
dict: Dict of converted tensors.
Examples:
>>> batch = [([np.arange(5), np.arange(3)],
[np.random.randn(8, 2), np.random.randn(4, 2)],
None, None)]
>>> conveter = CustomConverter()
>>> conveter(batch, torch.device("cpu"))
{'xs': tensor([[0, 1, 2, 3, 4],
[0, 1, 2, 0, 0]]),
'ilens': tensor([5, 3]),
'ys': tensor([[[-0.4197, -1.1157],
[-1.5837, -0.4299],
[-2.0491, 0.9215],
[-2.4326, 0.8891],
[ 1.2323, 1.7388],
[-0.3228, 0.6656],
[-0.6025, 1.3693],
[-1.0778, 1.3447]],
[[ 0.1768, -0.3119],
[ 0.4386, 2.5354],
[-1.2181, -0.5918],
[-0.6858, -0.8843],
[ 0.0000, 0.0000],
[ 0.0000, 0.0000],
[ 0.0000, 0.0000],
[ 0.0000, 0.0000]]]),
'labels': tensor([[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 1., 1., 1., 1., 1.]]),
'olens': tensor([8, 4])}
"""
# batch should be located in list
assert len(batch) == 1
xs, ys, spembs, extras = batch[0]
# get list of lengths (must be tensor for DataParallel)
ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).long().to(device)
olens = torch.from_numpy(np.array([y.shape[0] for y in ys])).long().to(device)
# perform padding and conversion to tensor
xs = pad_list([torch.from_numpy(x).float() for x in xs], 0).to(device)
ys = pad_list([torch.from_numpy(y).float() for y in ys], 0).to(device)
# make labels for stop prediction
labels = ys.new_zeros(ys.size(0), ys.size(1))
for i, l in enumerate(olens):
labels[i, l - 1 :] = 1.0
# prepare dict
new_batch = {
"xs": xs,
"ilens": ilens,
"ys": ys,
"labels": labels,
"olens": olens,
}
# load speaker embedding
if spembs is not None:
spembs = torch.from_numpy(np.array(spembs)).float()
new_batch["spembs"] = spembs.to(device)
# load second target
if extras is not None:
extras = pad_list([torch.from_numpy(extra).float() for extra in extras], 0)
new_batch["extras"] = extras.to(device)
return new_batch
def train(args):
"""Train E2E VC model."""
set_deterministic_pytorch(args)
# check cuda availability
if not torch.cuda.is_available():
logging.warning("cuda is not available")
# get input and output dimension info
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
utts = list(valid_json.keys())
# In TTS, this is reversed, but not in VC. See `espnet.utils.training.batchfy`
idim = int(valid_json[utts[0]]["input"][0]["shape"][1])
odim = int(valid_json[utts[0]]["output"][0]["shape"][1])
logging.info("#input dims : " + str(idim))
logging.info("#output dims: " + str(odim))
# get extra input and output dimenstion
if args.use_speaker_embedding:
args.spk_embed_dim = int(valid_json[utts[0]]["input"][1]["shape"][0])
else:
args.spk_embed_dim = None
if args.use_second_target:
args.spc_dim = int(valid_json[utts[0]]["input"][1]["shape"][1])
else:
args.spc_dim = None
# write model config
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
model_conf = args.outdir + "/model.json"
with open(model_conf, "wb") as f:
logging.info("writing a model config file to" + model_conf)
f.write(
json.dumps(
(idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)
for key in sorted(vars(args).keys()):
logging.info("ARGS: " + key + ": " + str(vars(args)[key]))
# specify model architecture
if args.enc_init is not None or args.dec_init is not None:
model = load_trained_modules(idim, odim, args, TTSInterface)
else:
model_class = dynamic_import(args.model_module)
model = model_class(idim, odim, args)
assert isinstance(model, TTSInterface)
logging.info(model)
reporter = model.reporter
# freeze modules, if specified
if args.freeze_mods:
for mod, param in model.named_parameters():
if any(mod.startswith(key) for key in args.freeze_mods):
logging.info("freezing %s" % mod)
param.requires_grad = False
for mod, param in model.named_parameters():
if not param.requires_grad:
logging.info("Frozen module %s" % mod)
# check the use of multi-gpu
if args.ngpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu)))
if args.batch_size != 0:
logging.warning(
"batch size is automatically increased (%d -> %d)"
% (args.batch_size, args.batch_size * args.ngpu)
)
args.batch_size *= args.ngpu
# set torch device
device = torch.device("cuda" if args.ngpu > 0 else "cpu")
model = model.to(device)
logging.warning(
"num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
sum(p.numel() for p in model.parameters() if p.requires_grad)
* 100.0
/ sum(p.numel() for p in model.parameters()),
)
)
# Setup an optimizer
if args.opt == "adam":
optimizer = torch.optim.Adam(
model.parameters(), args.lr, eps=args.eps, weight_decay=args.weight_decay
)
elif args.opt == "noam":
from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt
optimizer = get_std_opt(
model, args.adim, args.transformer_warmup_steps, args.transformer_lr
)
elif args.opt == "lamb":
from pytorch_lamb import Lamb
optimizer = Lamb(
model.parameters(), lr=args.lr, weight_decay=0.01, betas=(0.9, 0.999)
)
else:
raise NotImplementedError("unknown optimizer: " + args.opt)
# FIXME: TOO DIRTY HACK
setattr(optimizer, "target", reporter)
setattr(optimizer, "serialize", lambda s: reporter.serialize(s))
# read json data
with open(args.train_json, "rb") as f:
train_json = json.load(f)["utts"]
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
if use_sortagrad:
args.batch_sort_key = "input"
# make minibatch list (variable length)
train_batchset = make_batchset(
train_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
batch_sort_key=args.batch_sort_key,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
shortest_first=use_sortagrad,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
swap_io=False,
iaxis=0,
oaxis=0,
)
valid_batchset = make_batchset(
valid_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
batch_sort_key=args.batch_sort_key,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
swap_io=False,
iaxis=0,
oaxis=0,
)
load_tr = LoadInputsAndTargets(
mode="vc",
use_speaker_embedding=args.use_speaker_embedding,
use_second_target=args.use_second_target,
preprocess_conf=args.preprocess_conf,
preprocess_args={"train": True}, # Switch the mode of preprocessing
keep_all_data_on_mem=args.keep_all_data_on_mem,
)
load_cv = LoadInputsAndTargets(
mode="vc",
use_speaker_embedding=args.use_speaker_embedding,
use_second_target=args.use_second_target,
preprocess_conf=args.preprocess_conf,
preprocess_args={"train": False}, # Switch the mode of preprocessing
keep_all_data_on_mem=args.keep_all_data_on_mem,
)
converter = CustomConverter()
# hack to make batchsize argument as 1
# actual bathsize is included in a list
train_iter = {
"main": ChainerDataLoader(
dataset=TransformDataset(
train_batchset, lambda data: converter([load_tr(data)])
),
batch_size=1,
num_workers=args.num_iter_processes,
shuffle=not use_sortagrad,
collate_fn=lambda x: x[0],
)
}
valid_iter = {
"main": ChainerDataLoader(
dataset=TransformDataset(
valid_batchset, lambda data: converter([load_cv(data)])
),
batch_size=1,
shuffle=False,
collate_fn=lambda x: x[0],
num_workers=args.num_iter_processes,
)
}
# Set up a trainer
updater = CustomUpdater(
model, args.grad_clip, train_iter, optimizer, device, args.accum_grad
)
trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir)
# Resume from a snapshot
if args.resume:
logging.info("resumed from %s" % args.resume)
torch_resume(args.resume, trainer)
# set intervals
eval_interval = (args.eval_interval_epochs, "epoch")
save_interval = (args.save_interval_epochs, "epoch")
report_interval = (args.report_interval_iters, "iteration")
# Evaluate the model with the test dataset for each epoch
trainer.extend(
CustomEvaluator(model, valid_iter, reporter, device), trigger=eval_interval
)
# Save snapshot for each epoch
trainer.extend(torch_snapshot(), trigger=save_interval)
# Save best models
trainer.extend(
snapshot_object(model, "model.loss.best"),
trigger=training.triggers.MinValueTrigger(
"validation/main/loss", trigger=eval_interval
),
)
# Save attention figure for each epoch
if args.num_save_attention > 0:
data = sorted(
list(valid_json.items())[: args.num_save_attention],
key=lambda x: int(x[1]["input"][0]["shape"][1]),
reverse=True,
)
if hasattr(model, "module"):
att_vis_fn = model.module.calculate_all_attentions
plot_class = model.module.attention_plot_class
else:
att_vis_fn = model.calculate_all_attentions
plot_class = model.attention_plot_class
att_reporter = plot_class(
att_vis_fn,
data,
args.outdir + "/att_ws",
converter=converter,
transform=load_cv,
device=device,
reverse=True,
)
trainer.extend(att_reporter, trigger=eval_interval)
else:
att_reporter = None
# Make a plot for training and validation values
if hasattr(model, "module"):
base_plot_keys = model.module.base_plot_keys
else:
base_plot_keys = model.base_plot_keys
plot_keys = []
for key in base_plot_keys:
plot_key = ["main/" + key, "validation/main/" + key]
trainer.extend(
extensions.PlotReport(plot_key, "epoch", file_name=key + ".png"),
trigger=eval_interval,
)
plot_keys += plot_key
trainer.extend(
extensions.PlotReport(plot_keys, "epoch", file_name="all_loss.png"),
trigger=eval_interval,
)
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport(trigger=report_interval))
report_keys = ["epoch", "iteration", "elapsed_time"] + plot_keys
trainer.extend(extensions.PrintReport(report_keys), trigger=report_interval)
trainer.extend(extensions.ProgressBar(), trigger=report_interval)
set_early_stop(trainer, args)
if args.tensorboard_dir is not None and args.tensorboard_dir != "":
writer = SummaryWriter(args.tensorboard_dir)
trainer.extend(TensorboardLogger(writer, att_reporter), trigger=report_interval)
if use_sortagrad:
trainer.extend(
ShufflingEnabler([train_iter]),
trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"),
)
# Run the training
trainer.run()
check_early_stop(trainer, args.epochs)
@torch.no_grad()
def decode(args):
"""Decode with E2E VC model."""
set_deterministic_pytorch(args)
# read training config
idim, odim, train_args = get_model_conf(args.model, args.model_conf)
# show arguments
for key in sorted(vars(args).keys()):
logging.info("args: " + key + ": " + str(vars(args)[key]))
# define model
model_class = dynamic_import(train_args.model_module)
model = model_class(idim, odim, train_args)
assert isinstance(model, TTSInterface)
logging.info(model)
# load trained model parameters
logging.info("reading model parameters from " + args.model)
torch_load(args.model, model)
model.eval()
# set torch device
device = torch.device("cuda" if args.ngpu > 0 else "cpu")
model = model.to(device)
# read json data
with open(args.json, "rb") as f:
js = json.load(f)["utts"]
# check directory
outdir = os.path.dirname(args.out)
if len(outdir) != 0 and not os.path.exists(outdir):
os.makedirs(outdir)
load_inputs_and_targets = LoadInputsAndTargets(
mode="vc",
load_output=False,
sort_in_input_length=False,
use_speaker_embedding=train_args.use_speaker_embedding,
preprocess_conf=train_args.preprocess_conf
if args.preprocess_conf is None
else args.preprocess_conf,
preprocess_args={"train": False}, # Switch the mode of preprocessing
)
# define function for plot prob and att_ws
def _plot_and_save(array, figname, figsize=(6, 4), dpi=150):
import matplotlib.pyplot as plt
shape = array.shape
if len(shape) == 1:
# for eos probability
plt.figure(figsize=figsize, dpi=dpi)
plt.plot(array)
plt.xlabel("Frame")
plt.ylabel("Probability")
plt.ylim([0, 1])
elif len(shape) == 2:
# for tacotron 2 attention weights, whose shape is (out_length, in_length)
plt.figure(figsize=figsize, dpi=dpi)
plt.imshow(array, aspect="auto")
plt.xlabel("Input")
plt.ylabel("Output")
elif len(shape) == 4:
# for transformer attention weights,
# whose shape is (#leyers, #heads, out_length, in_length)
plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi)
for idx1, xs in enumerate(array):
for idx2, x in enumerate(xs, 1):
plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2)
plt.imshow(x, aspect="auto")
plt.xlabel("Input")
plt.ylabel("Output")
else:
raise NotImplementedError("Support only from 1D to 4D array.")
plt.tight_layout()
if not os.path.exists(os.path.dirname(figname)):
# NOTE: exist_ok = True is needed for parallel process decoding
os.makedirs(os.path.dirname(figname), exist_ok=True)
plt.savefig(figname)
plt.close()
# define function to calculate focus rate
# (see section 3.3 in https://arxiv.org/abs/1905.09263)
def _calculate_focus_rete(att_ws):
if att_ws is None:
# fastspeech case -> None
return 1.0
elif len(att_ws.shape) == 2:
# tacotron 2 case -> (L, T)
return float(att_ws.max(dim=-1)[0].mean())
elif len(att_ws.shape) == 4:
# transformer case -> (#layers, #heads, L, T)
return float(att_ws.max(dim=-1)[0].mean(dim=-1).max())
else:
raise ValueError("att_ws should be 2 or 4 dimensional tensor.")
# define function to convert attention to duration
def _convert_att_to_duration(att_ws):
if len(att_ws.shape) == 2:
# tacotron 2 case -> (L, T)
pass
elif len(att_ws.shape) == 4:
# transformer case -> (#layers, #heads, L, T)
# get the most diagonal head according to focus rate
att_ws = torch.cat(
[att_w for att_w in att_ws], dim=0
) # (#heads * #layers, L, T)
diagonal_scores = att_ws.max(dim=-1)[0].mean(dim=-1) # (#heads * #layers,)
diagonal_head_idx = diagonal_scores.argmax()
att_ws = att_ws[diagonal_head_idx] # (L, T)
else:
raise ValueError("att_ws should be 2 or 4 dimensional tensor.")
# calculate duration from 2d attention weight
durations = torch.stack(
[att_ws.argmax(-1).eq(i).sum() for i in range(att_ws.shape[1])]
)
return durations.view(-1, 1).float()
# define writer instances
feat_writer = kaldiio.WriteHelper("ark,scp:{o}.ark,{o}.scp".format(o=args.out))
if args.save_durations:
dur_writer = kaldiio.WriteHelper(
"ark,scp:{o}.ark,{o}.scp".format(o=args.out.replace("feats", "durations"))
)
if args.save_focus_rates:
fr_writer = kaldiio.WriteHelper(
"ark,scp:{o}.ark,{o}.scp".format(o=args.out.replace("feats", "focus_rates"))
)
# start decoding
for idx, utt_id in enumerate(js.keys()):
# setup inputs
batch = [(utt_id, js[utt_id])]
data = load_inputs_and_targets(batch)
x = torch.FloatTensor(data[0][0]).to(device)
spemb = None
if train_args.use_speaker_embedding:
spemb = torch.FloatTensor(data[1][0]).to(device)
# decode and write
start_time = time.time()
outs, probs, att_ws = model.inference(x, args, spemb=spemb)
logging.info(
"inference speed = %.1f frames / sec."
% (int(outs.size(0)) / (time.time() - start_time))
)
if outs.size(0) == x.size(0) * args.maxlenratio:
logging.warning("output length reaches maximum length (%s)." % utt_id)
focus_rate = _calculate_focus_rete(att_ws)
logging.info(
"(%d/%d) %s (size: %d->%d, focus rate: %.3f)"
% (idx + 1, len(js.keys()), utt_id, x.size(0), outs.size(0), focus_rate)
)
feat_writer[utt_id] = outs.cpu().numpy()
if args.save_durations:
ds = _convert_att_to_duration(att_ws)
dur_writer[utt_id] = ds.cpu().numpy()
if args.save_focus_rates:
fr_writer[utt_id] = np.array(focus_rate).reshape(1, 1)
# plot and save prob and att_ws
if probs is not None:
_plot_and_save(
probs.cpu().numpy(),
os.path.dirname(args.out) + "/probs/%s_prob.png" % utt_id,
)
if att_ws is not None:
_plot_and_save(
att_ws.cpu().numpy(),
os.path.dirname(args.out) + "/att_ws/%s_att_ws.png" % utt_id,
)
# close file object
feat_writer.close()
if args.save_durations:
dur_writer.close()
if args.save_focus_rates:
fr_writer.close()
|