Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import pickle
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
# === Load Model dan Label Encoder ===
|
11 |
+
model = tf.keras.models.load_model('/content/drive/MyDrive/AI CHORD RECOGNITION/Final/final_model.h5')
|
12 |
+
with open('/content/drive/MyDrive/AI CHORD RECOGNITION/Final/label_chord.pkl', 'rb') as f:
|
13 |
+
label_encoder = pickle.load(f)
|
14 |
+
|
15 |
+
# === Konversi MP3 ke WAV ===
|
16 |
+
def convert_mp3_to_wav(mp3_path):
|
17 |
+
sound = AudioSegment.from_mp3(mp3_path)
|
18 |
+
wav_path = mp3_path.replace('.mp3', '.wav')
|
19 |
+
sound.export(wav_path, format="wav")
|
20 |
+
return wav_path
|
21 |
+
|
22 |
+
# === Konversi Audio ke Mel Spectrogram ===
|
23 |
+
def audio_to_mel_spectrogram(y, sr):
|
24 |
+
y = librosa.util.normalize(y)
|
25 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=512, n_mels=128)
|
26 |
+
mel_spectrogram_db = librosa.power_to_db(mel_spectrogram, ref=np.max)
|
27 |
+
mel_spectrogram_db = (mel_spectrogram_db + 80) / 80 # Normalisasi ke 0-1
|
28 |
+
mel_spectrogram_db = tf.image.resize(mel_spectrogram_db[..., np.newaxis], (128, 128)).numpy()
|
29 |
+
mel_spectrogram_db = np.repeat(mel_spectrogram_db, 3, axis=-1)
|
30 |
+
return np.expand_dims(mel_spectrogram_db, axis=0)
|
31 |
+
|
32 |
+
# === Prediksi Chord ===
|
33 |
+
def predict_chords(audio_path):
|
34 |
+
if audio_path.endswith('.mp3'):
|
35 |
+
audio_path = convert_mp3_to_wav(audio_path)
|
36 |
+
|
37 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
38 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
39 |
+
chords = []
|
40 |
+
previous_chord = None
|
41 |
+
|
42 |
+
for i in range(0, int(duration)):
|
43 |
+
start_sample = i * sr
|
44 |
+
end_sample = (i + 1) * sr
|
45 |
+
y_segment = y[start_sample:end_sample]
|
46 |
+
if len(y_segment) == 0:
|
47 |
+
continue
|
48 |
+
|
49 |
+
mel_spectrogram = audio_to_mel_spectrogram(y_segment, sr)
|
50 |
+
prediction = model.predict(mel_spectrogram)
|
51 |
+
predicted_index = np.argmax(prediction)
|
52 |
+
predicted_chord = label_encoder.classes_[predicted_index]
|
53 |
+
predicted_chord = predicted_chord.replace('_', '')
|
54 |
+
|
55 |
+
if predicted_chord != previous_chord:
|
56 |
+
chords.append(predicted_chord)
|
57 |
+
previous_chord = predicted_chord
|
58 |
+
|
59 |
+
return f"Predicted Chords: {' - '.join(chords)}"
|
60 |
+
|
61 |
+
# === Gradio Interface ===
|
62 |
+
css = """
|
63 |
+
body {
|
64 |
+
font-family: sans-serif;
|
65 |
+
}
|
66 |
+
.gradio-container {
|
67 |
+
border-radius: 10px;
|
68 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
69 |
+
padding: 20px;
|
70 |
+
}
|
71 |
+
.gr-button {
|
72 |
+
background-color: #4CAF50;
|
73 |
+
color: white;
|
74 |
+
border: none;
|
75 |
+
padding: 6px 12px;
|
76 |
+
font-size: 14px;
|
77 |
+
cursor: pointer;
|
78 |
+
border-radius: 5px;
|
79 |
+
}
|
80 |
+
.gr-button:hover {
|
81 |
+
background-color: #4a894c;
|
82 |
+
}
|
83 |
+
.description {
|
84 |
+
margin-top: 40px;
|
85 |
+
margin-bottom:-10px;
|
86 |
+
}
|
87 |
+
"""
|
88 |
+
|
89 |
+
sample_audio_path = "/content/drive/MyDrive/AI CHORD RECOGNITION/Final/example.mp3"
|
90 |
+
|
91 |
+
title = f"AI Chord Recognition"
|
92 |
+
description = """
|
93 |
+
<div class='description'>
|
94 |
+
Upload an audio file (<strong>.mp3</strong> or <strong>.wav</strong>) and let the AI predict the chord progression.
|
95 |
+
You can also try my sample audio.
|
96 |
+
</div>
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(css=css) as interface:
|
100 |
+
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
101 |
+
gr.Markdown("<h3 style='text-align: center;'>Hello! I'm Tigor Neilson Sinaga, with NIM 22.11.4725.<br>Welcome to my AI Chord Recognition project!</h3>")
|
102 |
+
gr.Markdown(f"<h3 style='text-align: center;'>{description}</p>")
|
103 |
+
|
104 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio (MP3/WAV)")
|
105 |
+
use_sample_button = gr.Button("Use Sample Audio", size="sm")
|
106 |
+
predict_button = gr.Button("Predict Chords") # Changed line
|
107 |
+
output_text = gr.Textbox(label="Predicted Chords", lines=5, placeholder="Chord predictions will appear here...")
|
108 |
+
|
109 |
+
use_sample_button.click(fn=lambda: sample_audio_path, inputs=[], outputs=audio_input)
|
110 |
+
predict_button.click(fn=predict_chords, inputs=audio_input, outputs=output_text, queue=True)
|
111 |
+
gr.Markdown("<p style='text-align: center; font-size: 12px; color: grey;'>This project is still under development and has not yet reached high accuracy.</p>")
|
112 |
+
|
113 |
+
interface.launch(share=True)
|