import time import gradio as gr import spaces import numpy as np import torch from einops import rearrange, repeat from PIL import Image from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack from flux.util import ( SamplingOptions, load_ae, load_clip, load_flow_model, load_flow_model_quintized, load_t5, ) from pulid.pipeline_flux import PuLIDPipeline from pulid.utils import resize_numpy_image_long, seed_everything def get_models(name: str, device: torch.device, offload: bool): t5 = load_t5(device, max_length=128) clip = load_clip(device) model = load_flow_model(name, device="cpu" if offload else device) model.eval() ae = load_ae(name, device="cpu" if offload else device) return model, ae, t5, clip class FluxGenerator: def __init__(self): self.device = torch.device('cuda') self.offload = False self.model_name = 'flux-dev' self.model, self.ae, self.t5, self.clip = get_models( self.model_name, device=self.device, offload=self.offload, ) self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16) self.pulid_model.load_pretrain() flux_generator = FluxGenerator() @spaces.GPU(duration=30) @torch.inference_mode() def generate_image( prompt: str, id_image = None, width: int = 512, height: int = 512, num_steps: int = 20, start_step: int = 0, guidance: float = 4.0, seed: int = -1, id_weight: float = 1.0, neg_prompt: str = "", true_cfg: float = 1.0, timestep_to_start_cfg: int = 1, max_sequence_length: int = 128, gamma: float = 0.5, eta: float = 0.7, s: float = 0, tau: float = 5, perform_inversion: bool = True, perform_reconstruction: bool = False, perform_editing: bool = True, inversion_true_cfg: float = 1.0, ): """ Core function that performs the image generation. """ # self.t5.to(self.device) # self.clip_model.to(self.device) # self.ae.to(self.device) # self.model.to(self.device) flux_generator.t5.max_length = max_sequence_length # If seed == -1, random seed = int(seed) if seed == -1: seed = None opts = SamplingOptions( prompt=prompt, width=width, height=height, num_steps=num_steps, guidance=guidance, seed=seed, ) if opts.seed is None: opts.seed = torch.Generator(device="cpu").seed() seed_everything(opts.seed) print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...") t0 = time.perf_counter() use_true_cfg = abs(true_cfg - 1.0) > 1e-6 # 1) Prepare input noise noise = get_noise( num_samples=1, height=opts.height, width=opts.width, device=flux_generator.device, dtype=torch.bfloat16, seed=opts.seed, ) bs, c, h, w = noise.shape noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if noise.shape[0] == 1 and bs > 1: noise = repeat(noise, "1 ... -> bs ...", bs=bs) # Encode id_image directly here encode_t0 = time.perf_counter() # Resize image id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS) # Convert image to torch.Tensor and scale to [-1, 1] x = np.array(id_image).astype(np.float32) x = torch.from_numpy(x) # shape: (H, W, C) x = (x / 127.5) - 1.0 # now in [-1, 1] x = rearrange(x, "h w c -> 1 c h w") # shape: (1, C, H, W) x = x.to(flux_generator.device) # Encode with autocast with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): x = flux_generator.ae.encode(x) x = x.to(torch.bfloat16) # Offload if needed if flux_generator.offload: flux_generator.ae.encoder.to("cpu") torch.cuda.empty_cache() encode_t1 = time.perf_counter() print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.") timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False) # 2) Prepare text embeddings if flux_generator.offload: flux_generator.t5 = flux_generator.t5.to(flux_generator.device) flux_generator.clip_model = flux_generator.clip_model.to(flux_generator.device) inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt) inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="") inp_neg = None if use_true_cfg: inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt) # Offload text encoders, load ID detection to GPU if flux_generator.offload: flux_generator.t5 = flux_generator.t5.cpu() flux_generator.clip_model = flux_generator.clip_model.cpu() torch.cuda.empty_cache() flux_generator.pulid_model.components_to_device(torch.device("cuda")) # 3) ID Embeddings (optional) id_embeddings = None uncond_id_embeddings = None if id_image is not None: id_image = np.array(id_image) id_image = resize_numpy_image_long(id_image, 1024) id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg) else: id_embeddings = None uncond_id_embeddings = None y_0 = inp["img"].clone().detach() inverted = None if perform_inversion: inverted = rf_inversion( flux_generator.model, **inp_inversion, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=inversion_true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, aggressive_offload=flux_generator.aggressive_offload, y_1=noise, gamma=gamma ) img = inverted else: img = noise inp["img"] = img inp_inversion["img"] = img recon = None if perform_reconstruction: recon = rf_denoise( flux_generator.model, **inp_inversion, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=inversion_true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, aggressive_offload=flux_generator.aggressive_offload, y_0=y_0, eta=eta, s=s, tau=tau, ) edited = None if perform_editing: edited = rf_denoise( flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, aggressive_offload=flux_generator.aggressive_offload, y_0=y_0, eta=eta, s=s, tau=tau, ) # Offload flux model, load auto-decoder if flux_generator.offload: flux_generator.model.cpu() torch.cuda.empty_cache() flux_generator.ae.decoder.to(x.device) # 5) Decode latents if edited is not None: edited = unpack(edited.float(), opts.height, opts.width) with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): edited = flux_generator.ae.decode(edited) if inverted is not None: inverted = unpack(inverted.float(), opts.height, opts.width) with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): inverted = flux_generator.ae.decode(inverted) if recon is not None: recon = unpack(recon.float(), opts.height, opts.width) with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): recon = flux_generator.ae.decode(recon) if flux_generator.offload: flux_generator.ae.decoder.cpu() torch.cuda.empty_cache() t1 = time.perf_counter() print(f"Done in {t1 - t0:.2f} seconds.") # Convert to PIL if edited is not None: edited = edited.clamp(-1, 1) edited = rearrange(edited[0], "c h w -> h w c") edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy()) if inverted is not None: inverted = inverted.clamp(-1, 1) inverted = rearrange(inverted[0], "c h w -> h w c") inverted = Image.fromarray((127.5 * (inverted + 1.0)).cpu().byte().numpy()) if recon is not None: recon = recon.clamp(-1, 1) recon = rearrange(recon[0], "c h w -> h w c") recon = Image.fromarray((127.5 * (recon + 1.0)).cpu().byte().numpy()) return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list #

Paper: PuLID: Pure and Lightning ID Customization via Contrastive Alignment | Codes: GitHub

_HEADER_ = '''

Tight Inversion for Portrait Editing with FLUX

Provide a portrait image and an edit prompt. You can try the examples below or upload your own image. Adjust the id weight to control the faithfulness of the generated image to the input image. ''' # noqa E501 _CITE_ = r""" """ # noqa E501 def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False, aggressive_offload: bool = False): with gr.Blocks() as demo: gr.Markdown(_HEADER_) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic") id_image = gr.Image(label="ID Image", type="pil") id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="id weight") width = gr.Slider(256, 1536, 1024, step=16, label="Width", visible=args.dev) height = gr.Slider(256, 1536, 1024, step=16, label="Height", visible=args.dev) num_steps = gr.Slider(1, 28, 16, step=1, label="Number of steps") guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance") with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG", open=False): # noqa E501 neg_prompt = gr.Textbox( label="Negative Prompt", value="") true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="true CFG scale") timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev) start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID") seed = gr.Textbox(-1, label="Seed (-1 for random)") max_sequence_length = gr.Slider(128, 512, 128, step=128, label="max_sequence_length for prompt (T5), small will be faster") gr.Markdown("### RF Inversion Options") gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="gamma") eta = gr.Slider(0.0, 1.0, 0.7, step=0.1, label="eta") s = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="s") tau = gr.Slider(0, 20, 2, step=1, label="tau") generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image") seed_output = gr.Textbox(label="Used Seed") intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev) gr.Markdown(_CITE_) with gr.Row(), gr.Column(): gr.Markdown("## Examples") example_inps = [ # [ # 'a portrait of a vampire', # 'example_inputs/unsplash/krisna-putra-pratama-lKF-MdtuIss-unsplash.jpg', # 0.4, 3.5, 42, 3.5 # ], [ 'a portrait of a zombie', 'example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg', 0.4, 3.5, 42, 5.0 ], [ 'a portrait of an elf', 'example_inputs/unsplash/rahmat-alizada-7PwFKOgyoKo-unsplash.jpg', 0.5, 3.5, 42, 5.0 ], [ 'a portrait of a clown', 'example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg', 0.5, 3.5, 42, 3.5 ], [ 'a portrait of an elf', 'example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg', 0.5, 3.5, 42, 5.0 ], # [ # 'a portrait of a pirate', # 'example_inputs/unsplash/mina-rad-AEVUFpDGxZM-unsplash.jpg', # 0.3, 3.5, 42, 3.5 # ], [ 'a portrait of a superhero', 'example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg', 0.2, 3.5, 42, 5.0 ], ] gr.Examples(examples=example_inps, inputs=[prompt, id_image, id_weight, guidance, seed, true_cfg]) generate_btn.click( fn=generate_image, inputs=[prompt, id_image, width, height, num_steps, start_step, guidance, seed, id_weight, neg_prompt, true_cfg, timestep_to_start_cfg, max_sequence_length, gamma, eta, s, tau], outputs=[output_image, seed_output, intermediate_output], ) return demo if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev") parser.add_argument('--version', type=str, default='v0.9.1', help='version of the model', choices=['v0.9.0', 'v0.9.1']) parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'), help="currently only support flux-dev") parser.add_argument("--device", type=str, default="cuda", help="Device to use") parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use") parser.add_argument("--aggressive_offload", action="store_true", help="Offload model more aggressively to CPU when not in use, for 24G GPUs") parser.add_argument("--fp8", action="store_true", help="use flux-dev-fp8 model") parser.add_argument("--onnx_provider", type=str, default="gpu", choices=["gpu", "cpu"], help="set onnx_provider to cpu (default gpu) can help reduce RAM usage, and when combined with" "fp8 option, the peak RAM is under 15GB") parser.add_argument("--port", type=int, default=8080, help="Port to use") parser.add_argument("--dev", action='store_true', help="Development mode") parser.add_argument("--pretrained_model", type=str, help='for development') args = parser.parse_args() # args.fp8 = True if args.aggressive_offload: args.offload = True print(f"Using device: {args.device}") print(f"fp8: {args.fp8}") print(f"Offload: {args.offload}") demo = create_demo(args, args.name, args.device, args.offload, args.aggressive_offload) demo.launch(ssr_mode=False)