tight-inversion
Fix
c67f10c
raw
history blame
16.9 kB
import time
import gradio as gr
import spaces
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack
from flux.util import (
SamplingOptions,
load_ae,
load_clip,
load_flow_model,
load_flow_model_quintized,
load_t5,
)
from pulid.pipeline_flux import PuLIDPipeline
from pulid.utils import resize_numpy_image_long, seed_everything
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
model.eval()
ae = load_ae(name, device="cpu" if offload else device)
return model, ae, t5, clip
class FluxGenerator:
def __init__(self):
self.device = torch.device('cuda')
self.offload = False
self.model_name = 'flux-dev'
self.model, self.ae, self.t5, self.clip = get_models(
self.model_name,
device=self.device,
offload=self.offload,
)
self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16)
self.pulid_model.load_pretrain()
flux_generator = FluxGenerator()
@spaces.GPU(duration=30)
@torch.inference_mode()
def generate_image(
prompt: str,
id_image = None,
width: int = 512,
height: int = 512,
num_steps: int = 20,
start_step: int = 0,
guidance: float = 4.0,
seed: int = -1,
id_weight: float = 1.0,
neg_prompt: str = "",
true_cfg: float = 1.0,
timestep_to_start_cfg: int = 1,
max_sequence_length: int = 128,
gamma: float = 0.5,
eta: float = 0.7,
s: float = 0,
tau: float = 5,
perform_inversion: bool = True,
perform_reconstruction: bool = False,
perform_editing: bool = True,
inversion_true_cfg: float = 1.0,
):
"""
Core function that performs the image generation.
"""
# self.t5.to(self.device)
# self.clip_model.to(self.device)
# self.ae.to(self.device)
# self.model.to(self.device)
flux_generator.t5.max_length = max_sequence_length
# If seed == -1, random
seed = int(seed)
if seed == -1:
seed = None
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
seed_everything(opts.seed)
print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...")
t0 = time.perf_counter()
use_true_cfg = abs(true_cfg - 1.0) > 1e-6
# 1) Prepare input noise
noise = get_noise(
num_samples=1,
height=opts.height,
width=opts.width,
device=flux_generator.device,
dtype=torch.bfloat16,
seed=opts.seed,
)
bs, c, h, w = noise.shape
noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if noise.shape[0] == 1 and bs > 1:
noise = repeat(noise, "1 ... -> bs ...", bs=bs)
# Encode id_image directly here
encode_t0 = time.perf_counter()
# Resize image
id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS)
# Convert image to torch.Tensor and scale to [-1, 1]
x = np.array(id_image).astype(np.float32)
x = torch.from_numpy(x) # shape: (H, W, C)
x = (x / 127.5) - 1.0 # now in [-1, 1]
x = rearrange(x, "h w c -> 1 c h w") # shape: (1, C, H, W)
x = x.to(flux_generator.device)
# Encode with autocast
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
x = flux_generator.ae.encode(x)
x = x.to(torch.bfloat16)
# Offload if needed
if flux_generator.offload:
flux_generator.ae.encoder.to("cpu")
torch.cuda.empty_cache()
encode_t1 = time.perf_counter()
print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.")
timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False)
# 2) Prepare text embeddings
if flux_generator.offload:
flux_generator.t5 = flux_generator.t5.to(flux_generator.device)
flux_generator.clip_model = flux_generator.clip_model.to(flux_generator.device)
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt)
inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="")
inp_neg = None
if use_true_cfg:
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt)
# Offload text encoders, load ID detection to GPU
if flux_generator.offload:
flux_generator.t5 = flux_generator.t5.cpu()
flux_generator.clip_model = flux_generator.clip_model.cpu()
torch.cuda.empty_cache()
flux_generator.pulid_model.components_to_device(torch.device("cuda"))
# 3) ID Embeddings (optional)
id_embeddings = None
uncond_id_embeddings = None
if id_image is not None:
id_image = np.array(id_image)
id_image = resize_numpy_image_long(id_image, 1024)
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
else:
id_embeddings = None
uncond_id_embeddings = None
y_0 = inp["img"].clone().detach()
inverted = None
if perform_inversion:
inverted = rf_inversion(
flux_generator.model,
**inp_inversion,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=inversion_true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=flux_generator.aggressive_offload,
y_1=noise,
gamma=gamma
)
img = inverted
else:
img = noise
inp["img"] = img
inp_inversion["img"] = img
recon = None
if perform_reconstruction:
recon = rf_denoise(
flux_generator.model,
**inp_inversion,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=inversion_true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=flux_generator.aggressive_offload,
y_0=y_0,
eta=eta,
s=s,
tau=tau,
)
edited = None
if perform_editing:
edited = rf_denoise(
flux_generator.model,
**inp,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=flux_generator.aggressive_offload,
y_0=y_0,
eta=eta,
s=s,
tau=tau,
)
# Offload flux model, load auto-decoder
if flux_generator.offload:
flux_generator.model.cpu()
torch.cuda.empty_cache()
flux_generator.ae.decoder.to(x.device)
# 5) Decode latents
if edited is not None:
edited = unpack(edited.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
edited = flux_generator.ae.decode(edited)
if inverted is not None:
inverted = unpack(inverted.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
inverted = flux_generator.ae.decode(inverted)
if recon is not None:
recon = unpack(recon.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
recon = flux_generator.ae.decode(recon)
if flux_generator.offload:
flux_generator.ae.decoder.cpu()
torch.cuda.empty_cache()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.2f} seconds.")
# Convert to PIL
if edited is not None:
edited = edited.clamp(-1, 1)
edited = rearrange(edited[0], "c h w -> h w c")
edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy())
if inverted is not None:
inverted = inverted.clamp(-1, 1)
inverted = rearrange(inverted[0], "c h w -> h w c")
inverted = Image.fromarray((127.5 * (inverted + 1.0)).cpu().byte().numpy())
if recon is not None:
recon = recon.clamp(-1, 1)
recon = rearrange(recon[0], "c h w -> h w c")
recon = Image.fromarray((127.5 * (recon + 1.0)).cpu().byte().numpy())
return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list
# <p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2404.16022' target='_blank'>PuLID: Pure and Lightning ID Customization via Contrastive Alignment</a> | Codes: <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>GitHub</a></p>
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Tight Inversion for Portrait Editing with FLUX</h1>
</div>
Provide a portrait image and an edit prompt. You can try the examples below or upload your own image.
Adjust the id weight to control the faithfulness of the generated image to the input image.
''' # noqa E501
_CITE_ = r"""
""" # noqa E501
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False, aggressive_offload: bool = False):
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic")
id_image = gr.Image(label="ID Image", type="pil")
id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="id weight")
width = gr.Slider(256, 1536, 1024, step=16, label="Width", visible=args.dev)
height = gr.Slider(256, 1536, 1024, step=16, label="Height", visible=args.dev)
num_steps = gr.Slider(1, 28, 16, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG", open=False): # noqa E501
neg_prompt = gr.Textbox(
label="Negative Prompt",
value="")
true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="true CFG scale")
timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev)
start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID")
seed = gr.Textbox(-1, label="Seed (-1 for random)")
max_sequence_length = gr.Slider(128, 512, 128, step=128,
label="max_sequence_length for prompt (T5), small will be faster")
gr.Markdown("### RF Inversion Options")
gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="gamma")
eta = gr.Slider(0.0, 1.0, 0.7, step=0.1, label="eta")
s = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="s")
tau = gr.Slider(0, 20, 2, step=1, label="tau")
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
seed_output = gr.Textbox(label="Used Seed")
intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev)
gr.Markdown(_CITE_)
with gr.Row(), gr.Column():
gr.Markdown("## Examples")
example_inps = [
# [
# 'a portrait of a vampire',
# 'example_inputs/unsplash/krisna-putra-pratama-lKF-MdtuIss-unsplash.jpg',
# 0.4, 3.5, 42, 3.5
# ],
[
'a portrait of a zombie',
'example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg',
0.4, 3.5, 42, 5.0
],
[
'a portrait of an elf',
'example_inputs/unsplash/rahmat-alizada-7PwFKOgyoKo-unsplash.jpg',
0.5, 3.5, 42, 5.0
],
[
'a portrait of a clown',
'example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg',
0.5, 3.5, 42, 3.5
],
[
'a portrait of an elf',
'example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg',
0.5, 3.5, 42, 5.0
],
# [
# 'a portrait of a pirate',
# 'example_inputs/unsplash/mina-rad-AEVUFpDGxZM-unsplash.jpg',
# 0.3, 3.5, 42, 3.5
# ],
[
'a portrait of a superhero',
'example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg',
0.2, 3.5, 42, 5.0
],
]
gr.Examples(examples=example_inps, inputs=[prompt, id_image, id_weight, guidance, seed, true_cfg])
generate_btn.click(
fn=generate_image,
inputs=[prompt, id_image, width, height, num_steps, start_step, guidance, seed, id_weight, neg_prompt,
true_cfg, timestep_to_start_cfg, max_sequence_length, gamma, eta, s, tau],
outputs=[output_image, seed_output, intermediate_output],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
parser.add_argument('--version', type=str, default='v0.9.1', help='version of the model', choices=['v0.9.0', 'v0.9.1'])
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
help="currently only support flux-dev")
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--aggressive_offload", action="store_true", help="Offload model more aggressively to CPU when not in use, for 24G GPUs")
parser.add_argument("--fp8", action="store_true", help="use flux-dev-fp8 model")
parser.add_argument("--onnx_provider", type=str, default="gpu", choices=["gpu", "cpu"],
help="set onnx_provider to cpu (default gpu) can help reduce RAM usage, and when combined with"
"fp8 option, the peak RAM is under 15GB")
parser.add_argument("--port", type=int, default=8080, help="Port to use")
parser.add_argument("--dev", action='store_true', help="Development mode")
parser.add_argument("--pretrained_model", type=str, help='for development')
args = parser.parse_args()
# args.fp8 = True
if args.aggressive_offload:
args.offload = True
print(f"Using device: {args.device}")
print(f"fp8: {args.fp8}")
print(f"Offload: {args.offload}")
demo = create_demo(args, args.name, args.device, args.offload, args.aggressive_offload)
demo.launch(ssr_mode=False)