Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import cv2 | |
import insightface | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from basicsr.utils import img2tensor, tensor2img | |
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline | |
from facexlib.parsing import init_parsing_model | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from insightface.app import FaceAnalysis | |
from safetensors.torch import load_file | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.functional import normalize, resize | |
from eva_clip import create_model_and_transforms | |
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from pulid.encoders_transformer import IDFormer | |
from pulid.utils import is_torch2_available, sample_dpmpp_2m, sample_dpmpp_sde | |
if is_torch2_available(): | |
from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor | |
from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor | |
else: | |
from pulid.attention_processor import AttnProcessor, IDAttnProcessor | |
class PuLIDPipeline: | |
def __init__(self, sdxl_repo='Lykon/dreamshaper-xl-lightning', sampler='dpmpp_sde', *args, **kwargs): | |
super().__init__() | |
self.device = 'cuda' | |
# load base model | |
self.pipe = StableDiffusionXLPipeline.from_pretrained(sdxl_repo, torch_dtype=torch.float16, variant="fp16").to( | |
self.device | |
) | |
self.pipe.watermark = None | |
self.hack_unet_attn_layers(self.pipe.unet) | |
# scheduler | |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) | |
# ID adapters | |
self.id_adapter = IDFormer().to(self.device) | |
# preprocessors | |
# face align and parsing | |
self.face_helper = FaceRestoreHelper( | |
upscale_factor=1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
device=self.device, | |
) | |
self.face_helper.face_parse = None | |
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) | |
# clip-vit backbone | |
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) | |
model = model.visual | |
self.clip_vision_model = model.to(self.device) | |
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) | |
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) | |
if not isinstance(eva_transform_mean, (list, tuple)): | |
eva_transform_mean = (eva_transform_mean,) * 3 | |
if not isinstance(eva_transform_std, (list, tuple)): | |
eva_transform_std = (eva_transform_std,) * 3 | |
self.eva_transform_mean = eva_transform_mean | |
self.eva_transform_std = eva_transform_std | |
# antelopev2 | |
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') | |
self.app = FaceAnalysis( | |
name='antelopev2', root='.', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
) | |
self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx') | |
self.handler_ante.prepare(ctx_id=0) | |
gc.collect() | |
torch.cuda.empty_cache() | |
self.load_pretrain() | |
# other configs | |
self.debug_img_list = [] | |
# karras schedule related code, borrow from lllyasviel/Omost | |
linear_start = 0.00085 | |
linear_end = 0.012 | |
timesteps = 1000 | |
betas = torch.linspace(linear_start**0.5, linear_end**0.5, timesteps, dtype=torch.float64) ** 2 | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) | |
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 | |
self.log_sigmas = self.sigmas.log() | |
self.sigma_data = 1.0 | |
if sampler == 'dpmpp_sde': | |
self.sampler = sample_dpmpp_sde | |
elif sampler == 'dpmpp_2m': | |
self.sampler = sample_dpmpp_2m | |
else: | |
raise NotImplementedError(f'sampler {sampler} not implemented') | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
log_sigma = sigma.log() | |
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] | |
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) | |
def get_sigmas_karras(self, n, rho=7.0): | |
ramp = torch.linspace(0, 1, n) | |
min_inv_rho = self.sigma_min ** (1 / rho) | |
max_inv_rho = self.sigma_max ** (1 / rho) | |
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
return torch.cat([sigmas, sigmas.new_zeros([1])]) | |
def hack_unet_attn_layers(self, unet): | |
id_adapter_attn_procs = {} | |
for name, _ in unet.attn_processors.items(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is not None: | |
id_adapter_attn_procs[name] = IDAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
).to(unet.device) | |
else: | |
id_adapter_attn_procs[name] = AttnProcessor() | |
unet.set_attn_processor(id_adapter_attn_procs) | |
self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) | |
def load_pretrain(self): | |
hf_hub_download('guozinan/PuLID', 'pulid_v1.1.safetensors', local_dir='models') | |
ckpt_path = 'models/pulid_v1.1.safetensors' | |
state_dict = load_file(ckpt_path) | |
state_dict_dict = {} | |
for k, v in state_dict.items(): | |
module = k.split('.')[0] | |
state_dict_dict.setdefault(module, {}) | |
new_k = k[len(module) + 1 :] | |
state_dict_dict[module][new_k] = v | |
for module in state_dict_dict: | |
print(f'loading from {module}') | |
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) | |
def to_gray(self, img): | |
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] | |
x = x.repeat(1, 3, 1, 1) | |
return x | |
def get_id_embedding(self, image_list): | |
""" | |
Args: | |
image in image_list: numpy rgb image, range [0, 255] | |
""" | |
id_cond_list = [] | |
id_vit_hidden_list = [] | |
for ii, image in enumerate(image_list): | |
self.face_helper.clean_all() | |
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# get antelopev2 embedding | |
face_info = self.app.get(image_bgr) | |
if len(face_info) > 0: | |
face_info = sorted( | |
face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]) | |
)[ | |
-1 | |
] # only use the maximum face | |
id_ante_embedding = face_info['embedding'] | |
self.debug_img_list.append( | |
image[ | |
int(face_info['bbox'][1]) : int(face_info['bbox'][3]), | |
int(face_info['bbox'][0]) : int(face_info['bbox'][2]), | |
] | |
) | |
else: | |
id_ante_embedding = None | |
# using facexlib to detect and align face | |
self.face_helper.read_image(image_bgr) | |
self.face_helper.get_face_landmarks_5(only_center_face=True) | |
self.face_helper.align_warp_face() | |
if len(self.face_helper.cropped_faces) == 0: | |
raise RuntimeError('facexlib align face fail') | |
align_face = self.face_helper.cropped_faces[0] | |
# incase insightface didn't detect face | |
if id_ante_embedding is None: | |
print('fail to detect face using insightface, extract embedding on align face') | |
id_ante_embedding = self.handler_ante.get_feat(align_face) | |
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) | |
if id_ante_embedding.ndim == 1: | |
id_ante_embedding = id_ante_embedding.unsqueeze(0) | |
# parsing | |
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 | |
input = input.to(self.device) | |
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[ | |
0 | |
] | |
parsing_out = parsing_out.argmax(dim=1, keepdim=True) | |
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] | |
bg = sum(parsing_out == i for i in bg_label).bool() | |
white_image = torch.ones_like(input) | |
# only keep the face features | |
face_features_image = torch.where(bg, white_image, self.to_gray(input)) | |
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) | |
# transform img before sending to eva-clip-vit | |
face_features_image = resize( | |
face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC | |
) | |
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) | |
id_cond_vit, id_vit_hidden = self.clip_vision_model( | |
face_features_image, return_all_features=False, return_hidden=True, shuffle=False | |
) | |
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) | |
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) | |
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) | |
id_cond_list.append(id_cond) | |
id_vit_hidden_list.append(id_vit_hidden) | |
id_uncond = torch.zeros_like(id_cond_list[0]) | |
id_vit_hidden_uncond = [] | |
for layer_idx in range(0, len(id_vit_hidden_list[0])): | |
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden_list[0][layer_idx])) | |
id_cond = torch.stack(id_cond_list, dim=1) | |
id_vit_hidden = id_vit_hidden_list[0] | |
for i in range(1, len(image_list)): | |
for j, x in enumerate(id_vit_hidden_list[i]): | |
id_vit_hidden[j] = torch.cat([id_vit_hidden[j], x], dim=1) | |
id_embedding = self.id_adapter(id_cond, id_vit_hidden) | |
uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) | |
# return id_embedding | |
return uncond_id_embedding, id_embedding | |
def __call__(self, x, sigma, **extra_args): | |
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data**2) ** 0.5 | |
t = self.timestep(sigma) | |
cfg_scale = extra_args['cfg_scale'] | |
eps_positive = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] | |
eps_negative = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] | |
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) | |
return x - noise_pred * sigma[:, None, None, None] | |
def inference( | |
self, | |
prompt, | |
size, | |
prompt_n='', | |
id_embedding=None, | |
uncond_id_embedding=None, | |
id_scale=1.0, | |
guidance_scale=1.2, | |
steps=4, | |
seed=-1, | |
): | |
# sigmas | |
sigmas = self.get_sigmas_karras(steps).to(self.device) | |
# latents | |
noise = torch.randn((size[0], 4, size[1] // 8, size[2] // 8), device="cpu", generator=torch.manual_seed(seed)) | |
noise = noise.to(dtype=self.pipe.unet.dtype, device=self.device) | |
latents = noise * sigmas[0].to(noise) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt=prompt, | |
negative_prompt=prompt_n, | |
) | |
add_time_ids = list((size[1], size[2]) + (0, 0) + (size[1], size[2])) | |
add_time_ids = torch.tensor([add_time_ids], dtype=self.pipe.unet.dtype, device=self.device) | |
add_neg_time_ids = add_time_ids.clone() | |
sampler_kwargs = dict( | |
cfg_scale=guidance_scale, | |
positive=dict( | |
encoder_hidden_states=prompt_embeds, | |
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}, | |
cross_attention_kwargs={'id_embedding': id_embedding, 'id_scale': id_scale}, | |
), | |
negative=dict( | |
encoder_hidden_states=negative_prompt_embeds, | |
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids}, | |
cross_attention_kwargs={'id_embedding': uncond_id_embedding, 'id_scale': id_scale}, | |
), | |
) | |
latents = self.sampler(self, latents, sigmas, extra_args=sampler_kwargs, disable=False) | |
latents = latents.to(dtype=self.pipe.vae.dtype, device=self.device) / self.pipe.vae.config.scaling_factor | |
images = self.pipe.vae.decode(latents).sample | |
images = self.pipe.image_processor.postprocess(images, output_type='pil') | |
return images | |