Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,365 Bytes
4ebc565 0f1b614 e818c21 b785460 e818c21 0f1b614 b785460 092634c 0f1b614 4ebc565 0f1b614 96fea2f 0f1b614 1a8a74e 0f1b614 4ebc565 0f1b614 b785460 0f1b614 4ebc565 0f1b614 56a3023 0f1b614 4ebc565 0f1b614 56a3023 0f1b614 4ebc565 0f1b614 56a3023 0f1b614 4ebc565 0f1b614 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 896cebe 4ebc565 0f1b614 4ebc565 bb00456 4ebc565 96fea2f 4d0ddc3 96fea2f bb00456 61b1045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import time
import gradio as gr
import spaces
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack
from flux.util import (
SamplingOptions,
load_ae,
load_clip,
load_flow_model,
load_flow_model_quintized,
load_t5,
)
from pulid.pipeline_flux import PuLIDPipeline
from pulid.utils import resize_numpy_image_long, seed_everything
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip_model = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
model.eval()
ae = load_ae(name, device="cpu" if offload else device)
return model, ae, t5, clip_model
class FluxGenerator:
def __init__(self):
self.device = torch.device('cuda')
self.offload = False
self.model_name = 'flux-dev'
self.model, self.ae, self.t5, self.clip_model = get_models(
self.model_name,
device=self.device,
offload=self.offload,
)
self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16)
self.pulid_model.load_pretrain()
flux_generator = FluxGenerator()
@spaces.GPU(duration=80)
@torch.inference_mode()
def generate_image(
prompt: str,
id_image = None,
width: int = 512,
height: int = 512,
num_steps: int = 20,
start_step: int = 0,
guidance: float = 4.0,
seed: int = -1,
id_weight: float = 1.0,
neg_prompt: str = "",
true_cfg: float = 1.0,
timestep_to_start_cfg: int = 1,
max_sequence_length: int = 128,
gamma: float = 0.5,
eta: float = 0.7,
s: float = 0,
tau: float = 5,
perform_inversion: bool = True,
perform_reconstruction: bool = False,
perform_editing: bool = True,
inversion_true_cfg: float = 1.0,
):
"""
Core function that performs the image generation.
"""
# self.t5.to(self.device)
# self.clip_model.to(self.device)
# self.ae.to(self.device)
# self.model.to(self.device)
flux_generator.t5.max_length = max_sequence_length
# If seed == -1, random
seed = int(seed)
if seed == -1:
seed = None
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
seed_everything(opts.seed)
print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...")
t0 = time.perf_counter()
use_true_cfg = abs(true_cfg - 1.0) > 1e-6
# 1) Prepare input noise
noise = get_noise(
num_samples=1,
height=opts.height,
width=opts.width,
device=flux_generator.device,
dtype=torch.bfloat16,
seed=opts.seed,
)
bs, c, h, w = noise.shape
noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if noise.shape[0] == 1 and bs > 1:
noise = repeat(noise, "1 ... -> bs ...", bs=bs)
# Encode id_image directly here
encode_t0 = time.perf_counter()
# Resize image
id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS)
# Convert image to torch.Tensor and scale to [-1, 1]
x = np.array(id_image).astype(np.float32)
x = torch.from_numpy(x) # shape: (H, W, C)
x = (x / 127.5) - 1.0 # now in [-1, 1]
x = rearrange(x, "h w c -> 1 c h w") # shape: (1, C, H, W)
x = x.to(flux_generator.device)
# Encode with autocast
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
x = flux_generator.ae.encode(x)
x = x.to(torch.bfloat16)
# Offload if needed
if flux_generator.offload:
flux_generator.ae.encoder.to("cpu")
torch.cuda.empty_cache()
encode_t1 = time.perf_counter()
print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.")
timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False)
# 2) Prepare text embeddings
if flux_generator.offload:
flux_generator.t5 = flux_generator.t5.to(flux_generator.device)
flux_generator.clip_model = flux_generator.clip_model.to(flux_generator.device)
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt)
inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="")
inp_neg = None
if use_true_cfg:
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt)
# Offload text encoders, load ID detection to GPU
if flux_generator.offload:
flux_generator.t5 = flux_generator.t5.cpu()
flux_generator.clip_model = flux_generator.clip_model.cpu()
torch.cuda.empty_cache()
flux_generator.pulid_model.components_to_device(torch.device("cuda"))
# 3) ID Embeddings (optional)
id_embeddings = None
uncond_id_embeddings = None
if id_image is not None:
id_image = np.array(id_image)
id_image = resize_numpy_image_long(id_image, 1024)
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
else:
id_embeddings = None
uncond_id_embeddings = None
y_0 = inp["img"].clone().detach()
inverted = None
if perform_inversion:
inverted = rf_inversion(
flux_generator.model,
**inp_inversion,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=inversion_true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=False,
y_1=noise,
gamma=gamma
)
img = inverted
else:
img = noise
inp["img"] = img
inp_inversion["img"] = img
recon = None
if perform_reconstruction:
recon = rf_denoise(
flux_generator.model,
**inp_inversion,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=inversion_true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=False,
y_0=y_0,
eta=eta,
s=s,
tau=tau,
)
edited = None
if perform_editing:
edited = rf_denoise(
flux_generator.model,
**inp,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=False,
y_0=y_0,
eta=eta,
s=s,
tau=tau,
)
# Offload flux model, load auto-decoder
if flux_generator.offload:
flux_generator.model.cpu()
torch.cuda.empty_cache()
flux_generator.ae.decoder.to(x.device)
# 5) Decode latents
if edited is not None:
edited = unpack(edited.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
edited = flux_generator.ae.decode(edited)
if inverted is not None:
inverted = unpack(inverted.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
inverted = flux_generator.ae.decode(inverted)
if recon is not None:
recon = unpack(recon.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
recon = flux_generator.ae.decode(recon)
if flux_generator.offload:
flux_generator.ae.decoder.cpu()
torch.cuda.empty_cache()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.2f} seconds.")
# Convert to PIL
if edited is not None:
edited = edited.clamp(-1, 1)
edited = rearrange(edited[0], "c h w -> h w c")
edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy())
if inverted is not None:
inverted = inverted.clamp(-1, 1)
inverted = rearrange(inverted[0], "c h w -> h w c")
inverted = Image.fromarray((127.5 * (inverted + 1.0)).cpu().byte().numpy())
if recon is not None:
recon = recon.clamp(-1, 1)
recon = rearrange(recon[0], "c h w -> h w c")
recon = Image.fromarray((127.5 * (recon + 1.0)).cpu().byte().numpy())
return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list
# <p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2404.16022' target='_blank'>PuLID: Pure and Lightning ID Customization via Contrastive Alignment</a> | Codes: <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>GitHub</a></p>
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Tight Inversion for Portrait Editing with FLUX</h1>
</div>
Provide a portrait image and an edit prompt. You can try the examples below or upload your own image.
Adjust the id weight to control the faithfulness of the generated image to the input image.
''' # noqa E501
_CITE_ = r"""
""" # noqa E501
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False, aggressive_offload: bool = False):
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic")
id_image = gr.Image(label="ID Image", type="pil")
id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="id weight")
width = gr.Slider(256, 1536, 1024, step=16, label="Width", visible=args.dev)
height = gr.Slider(256, 1536, 1024, step=16, label="Height", visible=args.dev)
num_steps = gr.Slider(1, 20, 16, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG", open=False): # noqa E501
neg_prompt = gr.Textbox(
label="Negative Prompt",
value="")
true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="true CFG scale")
timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev)
start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID")
seed = gr.Textbox(-1, label="Seed (-1 for random)")
max_sequence_length = gr.Slider(128, 512, 128, step=128,
label="max_sequence_length for prompt (T5), small will be faster")
gr.Markdown("### RF Inversion Options")
gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="gamma")
eta = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="eta")
s = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="s")
tau = gr.Slider(0, 20, 2, step=1, label="tau")
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
seed_output = gr.Textbox(label="Used Seed")
intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev)
gr.Markdown(_CITE_)
with gr.Row(), gr.Column():
gr.Markdown("## Examples")
example_inps = [
[
'a portrait of a clown',
'example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg',
0.5, 3.5, 42, 5.0, 0.7
],
[
'a portrait of a zombie',
'example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg',
0.4, 3.5, 42, 5.0, 0.7
],
[
'a portrait of an elf',
'example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg',
0.5, 3.5, 42, 5.0, 0.7
],
[
'a portrait of a demon',
'example_inputs/unsplash/marcin-sajur-nZdMgqvYPBY-unsplash.jpg',
0.3, 3.5, 42, 5.0, 0.7
],
[
'a portrait of a superhero',
'example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg',
0.2, 3.5, 42, 5.0, 0.8
],
]
gr.Examples(examples=example_inps, inputs=[prompt, id_image, id_weight, guidance, seed, true_cfg, eta])
generate_btn.click(
fn=generate_image,
inputs=[prompt, id_image, width, height, num_steps, start_step, guidance, seed, id_weight, neg_prompt,
true_cfg, timestep_to_start_cfg, max_sequence_length, gamma, eta, s, tau],
outputs=[output_image, seed_output, intermediate_output],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
parser.add_argument('--version', type=str, default='v0.9.1', help='version of the model', choices=['v0.9.0', 'v0.9.1'])
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
help="currently only support flux-dev")
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--aggressive_offload", action="store_true", help="Offload model more aggressively to CPU when not in use, for 24G GPUs")
parser.add_argument("--fp8", action="store_true", help="use flux-dev-fp8 model")
parser.add_argument("--onnx_provider", type=str, default="gpu", choices=["gpu", "cpu"],
help="set onnx_provider to cpu (default gpu) can help reduce RAM usage, and when combined with"
"fp8 option, the peak RAM is under 15GB")
parser.add_argument("--port", type=int, default=8080, help="Port to use")
parser.add_argument("--dev", action='store_true', help="Development mode")
parser.add_argument("--pretrained_model", type=str, help='for development')
args = parser.parse_args()
# args.fp8 = True
if args.aggressive_offload:
args.offload = True
print(f"Using device: {args.device}")
print(f"fp8: {args.fp8}")
print(f"Offload: {args.offload}")
demo = create_demo(args, args.name, args.device, args.offload, args.aggressive_offload)
demo.launch(ssr_mode=False)
|