Spaces:
Sleeping
Sleeping
File size: 1,289 Bytes
7af72c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import streamlit as st
import pandas as pd
import numpy as np
from transformers import (AutoTokenizer, AutoModelForSequenceClassification)
model = AutoModelForSequenceClassification.from_pretrained('tiedaar/metacognitive-cls',
num_labels=8,
problem_type = "multi_label_classification")
tokenizer = AutoTokenizer.from_pretrained('tiedaar/metacognitive-cls', use_fast=False)
labels = list(model.config.id2label.values())
def sigmoid(x):
return 1/(1 + np.exp(-x))
def generate_output(sequence):
input_ids = tokenizer(sequence, return_tensors='pt')['input_ids']
outputs = np.array(model(input_ids).logits.detach().reshape(-1))
predictions = sigmoid(outputs)
predictions = (predictions > 0.5).astype(int)
return predictions
st.title("Metacognitive Strategy Classification")
st.subheader("This app classifies natural language descriptions of study strategies according to the metacognitive strategies being employed")
sequence = st.text_area("Please input the text here")
df = pd.DataFrame(columns=labels)
if st.button("Click here"):
resp = generate_output(sequence)
df.loc[len(df)] = resp
st.table(df) |