Kastg commited on
Commit
05f31cc
·
verified ·
1 Parent(s): 49257f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -7
app.py CHANGED
@@ -1,14 +1,36 @@
 
 
 
1
  from fastapi import FastAPI, HTTPException, Request
2
  from fastapi.responses import JSONResponse
3
- from llama_cpp import Llama
4
  import gradio as gr
5
 
 
6
  app = FastAPI()
7
 
 
8
  llm = gr.Llama(model_path="model.gguf", n_ctx=4000, n_threads=2, chat_format="chatml")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  @app.post("/api/v1/chat")
11
  async def chat_post(request: Request):
 
 
 
 
12
  data = await request.json()
13
  message = data.get("message")
14
  history = data.get("history", [])
@@ -18,23 +40,31 @@ async def chat_post(request: Request):
18
  async def generate():
19
  system_prompt = "You are OpenChat, a useful AI assistant."
20
  formatted_prompt = [{"role": "system", "content": system_prompt}]
21
- for user_prompt, bot_response in history:
22
  formatted_prompt.append({"role": "user", "content": user_prompt})
23
- formatted_prompt.append({"role": "assistant", "content": bot_response })
24
  formatted_prompt.append({"role": "user", "content": message})
25
- stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True)
26
- response = ""
 
27
  for chunk in stream_response:
28
  if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
29
- response += chunk['choices'][0]["delta"]["content"]
30
  yield response
31
 
32
- return JSONResponse(content={"response": await generate()})
 
 
 
 
33
 
 
34
  @app.get("/api/v1/chat")
35
  async def chat_get():
36
  return {"message": "Send a POST request to this endpoint to chat."}
37
 
 
38
  if __name__ == "__main__":
39
  import uvicorn
40
  uvicorn.run(app, host="0.0.0.0", port=8000)
 
 
1
+ import discord
2
+ from discord.ext import commands
3
+ from discord.ext.commands import Context
4
  from fastapi import FastAPI, HTTPException, Request
5
  from fastapi.responses import JSONResponse
 
6
  import gradio as gr
7
 
8
+ # Initialize FastAPI app
9
  app = FastAPI()
10
 
11
+ # Initialize Gradio Llama model
12
  llm = gr.Llama(model_path="model.gguf", n_ctx=4000, n_threads=2, chat_format="chatml")
13
 
14
+ # Initialize Discord bot
15
+ bot = commands.Bot(command_prefix='&') # Define the command prefix
16
+
17
+ # Global variable to store the channel where chats will be sent
18
+ chat_channel = None
19
+
20
+ # Define the command to set the chat channel
21
+ @bot.command()
22
+ async def set_channel(ctx: Context, channel: discord.TextChannel):
23
+ global chat_channel
24
+ chat_channel = channel
25
+ await ctx.send(f"Chat channel set to {channel.mention}")
26
+
27
+ # Define the function to handle the chat endpoint
28
  @app.post("/api/v1/chat")
29
  async def chat_post(request: Request):
30
+ global chat_channel
31
+ if chat_channel is None:
32
+ raise HTTPException(status_code=400, detail="Chat channel is not set")
33
+
34
  data = await request.json()
35
  message = data.get("message")
36
  history = data.get("history", [])
 
40
  async def generate():
41
  system_prompt = "You are OpenChat, a useful AI assistant."
42
  formatted_prompt = [{"role": "system", "content": system_prompt}]
43
+ for user_prompt, bot_response in history:
44
  formatted_prompt.append({"role": "user", "content": user_prompt})
45
+ formatted_prompt.append({"role": "assistant", "content": bot_response})
46
  formatted_prompt.append({"role": "user", "content": message})
47
+ stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature,
48
+ max_tokens=max_tokens, stream=True)
49
+ response = ""
50
  for chunk in stream_response:
51
  if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
52
+ response += chunk['choices'][0]["delta"]["content"]
53
  yield response
54
 
55
+ # Send the generated response to the chat channel
56
+ async for response in generate():
57
+ await chat_channel.send(response)
58
+
59
+ return JSONResponse(content={"response": "Message sent to chat channel"})
60
 
61
+ # Define the function to handle the GET request for chat
62
  @app.get("/api/v1/chat")
63
  async def chat_get():
64
  return {"message": "Send a POST request to this endpoint to chat."}
65
 
66
+ # Run the bot
67
  if __name__ == "__main__":
68
  import uvicorn
69
  uvicorn.run(app, host="0.0.0.0", port=8000)
70
+ bot.run('YOUR_DISCORD_BOT_TOKEN') # Replace 'YOUR_DISCORD_BOT_TOKEN' with your actual bot token