DiffusionModel / library /common_gui.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
from tkinter import filedialog, Tk
from easygui import msgbox
import os
import re
import gradio as gr
import easygui
import shutil
import sys
import json
from library.custom_logging import setup_logging
from datetime import datetime
# Set up logging
log = setup_logging()
folder_symbol = '\U0001f4c2' # πŸ“‚
refresh_symbol = '\U0001f504' # πŸ”„
save_style_symbol = '\U0001f4be' # πŸ’Ύ
document_symbol = '\U0001F4C4' # πŸ“„
# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
'stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
'stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# define a list of substrings to v1.x models
V1_MODELS = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
# define a list of substrings to search for SDXL base models
SDXL_MODELS = [
'stabilityai/stable-diffusion-xl-base-0.9',
'stabilityai/stable-diffusion-xl-refiner-0.9'
]
# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS + SDXL_MODELS
ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
def check_if_model_exist(
output_name, output_dir, save_model_as, headless=False
):
if headless:
log.info(
'Headless mode, skipping verification if model already exist... if model already exist it will be overwritten...'
)
return False
if save_model_as in ['diffusers', 'diffusers_safetendors']:
ckpt_folder = os.path.join(output_dir, output_name)
if os.path.isdir(ckpt_folder):
msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
elif save_model_as in ['ckpt', 'safetensors']:
ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
if os.path.isfile(ckpt_file):
msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
else:
log.info(
'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
)
return False
return False
def output_message(msg='', title='', headless=False):
if headless:
log.info(msg)
else:
msgbox(msg=msg, title=title)
def update_my_data(my_data):
# Update the optimizer based on the use_8bit_adam flag
use_8bit_adam = my_data.get('use_8bit_adam', False)
my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')
# Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
model_list = my_data.get('model_list', [])
pretrained_model_name_or_path = my_data.get(
'pretrained_model_name_or_path', ''
)
if (
not model_list
or pretrained_model_name_or_path not in ALL_PRESET_MODELS
):
my_data['model_list'] = 'custom'
# Convert values to int if they are strings
for key in ['epoch', 'save_every_n_epochs', 'lr_warmup']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = int(value)
elif not value:
my_data[key] = 0
# Convert values to float if they are strings
for key in ['noise_offset', 'learning_rate', 'text_encoder_lr', 'unet_lr']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = float(value)
elif not value:
my_data[key] = 0
# Update LoRA_type if it is set to LoCon
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
my_data['LoRA_type'] = 'LyCORIS/LoCon'
# Update model save choices due to changes for LoRA and TI training
if 'save_model_as' in my_data:
if (
my_data.get('LoRA_type') or my_data.get('num_vectors_per_token')
) and my_data.get('save_model_as') not in ['safetensors', 'ckpt']:
message = 'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
if my_data.get('LoRA_type'):
log.info(message.format('LoRA'))
if my_data.get('num_vectors_per_token'):
log.info(message.format('TI'))
my_data['save_model_as'] = 'safetensors'
return my_data
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
def get_file_path(
file_path='', default_extension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
# Create a hidden Tkinter root window
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
# Show the open file dialog and get the selected file path
file_path = filedialog.askopenfilename(
filetypes=(
(extension_name, f'*{default_extension}'),
('All files', '*.*'),
),
defaultextension=default_extension,
initialfile=initial_file,
initialdir=initial_dir,
)
# Destroy the hidden root window
root.destroy()
# If no file is selected, use the current file path
if not file_path:
file_path = current_file_path
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
return file_path
def get_any_file_path(file_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def get_folder_path(folder_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# log.info(save_file_path)
if save_file_path == None:
file_path = current_file_path
else:
log.info(save_file_path.name)
file_path = save_file_path.name
# log.info(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=(
(f'{extension_name}', f'{extensions}'),
('All files', '*'),
),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# log.info(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder: str = '',
prefix: str = '',
postfix: str = '',
caption_file_ext: str = '.caption',
) -> None:
"""
Add prefix and/or postfix to the content of caption files within a folder.
If no caption files are found, create one with the requested prefix and/or postfix.
Args:
folder (str): Path to the folder containing caption files.
prefix (str, optional): Prefix to add to the content of the caption files.
postfix (str, optional): Postfix to add to the content of the caption files.
caption_file_ext (str, optional): Extension of the caption files.
"""
if prefix == '' and postfix == '':
return
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [
f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
]
for image_file in image_files:
caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
caption_file_path = os.path.join(folder, caption_file_name)
if not os.path.exists(caption_file_path):
with open(caption_file_path, 'w', encoding='utf8') as f:
separator = ' ' if prefix and postfix else ''
f.write(f'{prefix}{separator}{postfix}')
else:
with open(caption_file_path, 'r+', encoding='utf8') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
prefix_separator = ' ' if prefix else ''
postfix_separator = ' ' if postfix else ''
f.write(
f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
)
def has_ext_files(folder_path: str, file_extension: str) -> bool:
"""
Check if there are any files with the specified extension in the given folder.
Args:
folder_path (str): Path to the folder containing files.
file_extension (str): Extension of the files to look for.
Returns:
bool: True if files with the specified extension are found, False otherwise.
"""
for file in os.listdir(folder_path):
if file.endswith(file_extension):
return True
return False
def find_replace(
folder_path: str = '',
caption_file_ext: str = '.caption',
search_text: str = '',
replace_text: str = '',
) -> None:
"""
Find and replace text in caption files within a folder.
Args:
folder_path (str, optional): Path to the folder containing caption files.
caption_file_ext (str, optional): Extension of the caption files.
search_text (str, optional): Text to search for in the caption files.
replace_text (str, optional): Text to replace the search text with.
"""
log.info('Running caption find/replace')
if not has_ext_files(folder_path, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder_path}...'
)
return
if search_text == '':
return
caption_files = [
f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
]
for caption_file in caption_files:
with open(
os.path.join(folder_path, caption_file), 'r', errors='ignore'
) as f:
content = f.read()
content = content.replace(search_text, replace_text)
with open(os.path.join(folder_path, caption_file), 'w') as f:
f.write(content)
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
log.info(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
log.info(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(
model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
):
# Check if the given model_list is in the list of SDXL models
if str(model_list) in SDXL_MODELS:
log.info('SDXL model selected. Setting sdxl parameters')
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=True, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V2 base models
if str(model_list) in V2_BASE_MODELS:
log.info('SD v2 base model selected. Setting --v2 parameter')
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V parameterization models
if str(model_list) in V_PARAMETERIZATION_MODELS:
log.info(
'SD v2 model selected. Setting --v2 and --v_parameterization parameters'
)
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=True, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V1 models
if str(model_list) in V1_MODELS:
log.info(
'SD v1.4 model selected.'
)
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the model_list is set to 'custom'
if model_list == 'custom':
v2 = gr.Checkbox.update(visible=True)
v_parameterization = gr.Checkbox.update(visible=True)
sdxl = gr.Checkbox.update(visible=True)
pretrained_model_name_or_path = gr.Textbox.update(visible=True)
pretrained_model_name_or_path_file = gr.Button.update(visible=True)
pretrained_model_name_or_path_folder = gr.Button.update(visible=True)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
###
### Gradio common GUI section
###
def get_pretrained_model_name_or_path_file(
model_list, pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_any_file_path(
pretrained_model_name_or_path
)
# set_model_list(model_list, pretrained_model_name_or_path)
def get_int_or_default(kwargs, key, default_value=0):
value = kwargs.get(key, default_value)
if isinstance(value, int):
return value
elif isinstance(value, str):
return int(value)
elif isinstance(value, float):
return int(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_float_or_default(kwargs, key, default_value=0.0):
value = kwargs.get(key, default_value)
if isinstance(value, float):
return value
elif isinstance(value, int):
return float(value)
elif isinstance(value, str):
return float(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_str_or_default(kwargs, key, default_value=""):
value = kwargs.get(key, default_value)
if isinstance(value, str):
return value
elif isinstance(value, int):
return str(value)
elif isinstance(value, str):
return str(value)
else:
return default_value
def run_cmd_training(**kwargs):
run_cmd = ''
learning_rate = kwargs.get("learning_rate", "")
if learning_rate:
run_cmd += f' --learning_rate="{learning_rate}"'
lr_scheduler = kwargs.get("lr_scheduler", "")
if lr_scheduler:
run_cmd += f' --lr_scheduler="{lr_scheduler}"'
lr_warmup_steps = kwargs.get("lr_warmup_steps", "")
if lr_warmup_steps:
if lr_scheduler == 'constant':
log.info('Can\'t use LR warmup with LR Scheduler constant... ignoring...')
else:
run_cmd += f' --lr_warmup_steps="{lr_warmup_steps}"'
train_batch_size = kwargs.get("train_batch_size", "")
if train_batch_size:
run_cmd += f' --train_batch_size="{train_batch_size}"'
max_train_steps = kwargs.get("max_train_steps", "")
if max_train_steps:
run_cmd += f' --max_train_steps="{max_train_steps}"'
save_every_n_epochs = kwargs.get("save_every_n_epochs")
if save_every_n_epochs:
run_cmd += f' --save_every_n_epochs="{int(save_every_n_epochs)}"'
mixed_precision = kwargs.get("mixed_precision", "")
if mixed_precision:
run_cmd += f' --mixed_precision="{mixed_precision}"'
save_precision = kwargs.get("save_precision", "")
if save_precision:
run_cmd += f' --save_precision="{save_precision}"'
seed = kwargs.get("seed", "")
if seed != '':
run_cmd += f' --seed="{seed}"'
caption_extension = kwargs.get("caption_extension", "")
if caption_extension:
run_cmd += f' --caption_extension="{caption_extension}"'
cache_latents = kwargs.get('cache_latents')
if cache_latents:
run_cmd += ' --cache_latents'
cache_latents_to_disk = kwargs.get('cache_latents_to_disk')
if cache_latents_to_disk:
run_cmd += ' --cache_latents_to_disk'
optimizer_type = kwargs.get("optimizer", "AdamW")
run_cmd += f' --optimizer_type="{optimizer_type}"'
optimizer_args = kwargs.get("optimizer_args", "")
if optimizer_args != '':
run_cmd += f' --optimizer_args {optimizer_args}'
return run_cmd
def run_cmd_advanced_training(**kwargs):
run_cmd = ''
max_train_epochs = kwargs.get("max_train_epochs", "")
if max_train_epochs:
run_cmd += f' --max_train_epochs={max_train_epochs}'
max_data_loader_n_workers = kwargs.get("max_data_loader_n_workers", "")
if max_data_loader_n_workers:
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
max_token_length = int(kwargs.get("max_token_length", 75))
if max_token_length > 75:
run_cmd += f' --max_token_length={max_token_length}'
clip_skip = int(kwargs.get("clip_skip", 1))
if clip_skip > 1:
run_cmd += f' --clip_skip={clip_skip}'
resume = kwargs.get("resume", "")
if resume:
run_cmd += f' --resume="{resume}"'
keep_tokens = int(kwargs.get("keep_tokens", 0))
if keep_tokens > 0:
run_cmd += f' --keep_tokens="{keep_tokens}"'
caption_dropout_every_n_epochs = int(kwargs.get("caption_dropout_every_n_epochs", 0))
if caption_dropout_every_n_epochs > 0:
run_cmd += f' --caption_dropout_every_n_epochs="{caption_dropout_every_n_epochs}"'
caption_dropout_rate = float(kwargs.get("caption_dropout_rate", 0))
if caption_dropout_rate > 0:
run_cmd += f' --caption_dropout_rate="{caption_dropout_rate}"'
vae_batch_size = int(kwargs.get("vae_batch_size", 0))
if vae_batch_size > 0:
run_cmd += f' --vae_batch_size="{vae_batch_size}"'
bucket_reso_steps = int(kwargs.get("bucket_reso_steps", 64))
run_cmd += f' --bucket_reso_steps={bucket_reso_steps}'
save_every_n_steps = int(kwargs.get("save_every_n_steps", 0))
if save_every_n_steps > 0:
run_cmd += f' --save_every_n_steps="{save_every_n_steps}"'
save_last_n_steps = int(kwargs.get("save_last_n_steps", 0))
if save_last_n_steps > 0:
run_cmd += f' --save_last_n_steps="{save_last_n_steps}"'
save_last_n_steps_state = int(kwargs.get("save_last_n_steps_state", 0))
if save_last_n_steps_state > 0:
run_cmd += f' --save_last_n_steps_state="{save_last_n_steps_state}"'
min_snr_gamma = int(kwargs.get("min_snr_gamma", 0))
if min_snr_gamma >= 1:
run_cmd += f' --min_snr_gamma={min_snr_gamma}'
min_timestep = int(kwargs.get("min_timestep", 0))
if min_timestep > 0:
run_cmd += f' --min_timestep={min_timestep}'
max_timestep = int(kwargs.get("max_timestep", 1000))
if max_timestep < 1000:
run_cmd += f' --max_timestep={max_timestep}'
save_state = kwargs.get('save_state')
if save_state:
run_cmd += ' --save_state'
mem_eff_attn = kwargs.get('mem_eff_attn')
if mem_eff_attn:
run_cmd += ' --mem_eff_attn'
color_aug = kwargs.get('color_aug')
if color_aug:
run_cmd += ' --color_aug'
flip_aug = kwargs.get('flip_aug')
if flip_aug:
run_cmd += ' --flip_aug'
shuffle_caption = kwargs.get('shuffle_caption')
if shuffle_caption:
run_cmd += ' --shuffle_caption'
gradient_checkpointing = kwargs.get('gradient_checkpointing')
if gradient_checkpointing:
run_cmd += ' --gradient_checkpointing'
full_fp16 = kwargs.get('full_fp16')
if full_fp16:
run_cmd += ' --full_fp16'
xformers = kwargs.get('xformers')
if xformers:
run_cmd += ' --xformers'
persistent_data_loader_workers = kwargs.get('persistent_data_loader_workers')
if persistent_data_loader_workers:
run_cmd += ' --persistent_data_loader_workers'
bucket_no_upscale = kwargs.get('bucket_no_upscale')
if bucket_no_upscale:
run_cmd += ' --bucket_no_upscale'
random_crop = kwargs.get('random_crop')
if random_crop:
run_cmd += ' --random_crop'
scale_v_pred_loss_like_noise_pred = kwargs.get('scale_v_pred_loss_like_noise_pred')
if scale_v_pred_loss_like_noise_pred:
run_cmd += ' --scale_v_pred_loss_like_noise_pred'
noise_offset_type = kwargs.get('noise_offset_type', 'Original')
if noise_offset_type == 'Original':
noise_offset = float(kwargs.get("noise_offset", 0))
if noise_offset > 0:
run_cmd += f' --noise_offset={noise_offset}'
adaptive_noise_scale = float(kwargs.get("adaptive_noise_scale", 0))
if adaptive_noise_scale != 0 and noise_offset > 0:
run_cmd += f' --adaptive_noise_scale={adaptive_noise_scale}'
else:
multires_noise_iterations = int(kwargs.get("multires_noise_iterations", 0))
if multires_noise_iterations > 0:
run_cmd += f' --multires_noise_iterations="{multires_noise_iterations}"'
multires_noise_discount = float(kwargs.get("multires_noise_discount", 0))
if multires_noise_discount > 0:
run_cmd += f' --multires_noise_discount="{multires_noise_discount}"'
additional_parameters = kwargs.get("additional_parameters", "")
if additional_parameters:
run_cmd += f' {additional_parameters}'
use_wandb = kwargs.get('use_wandb')
if use_wandb:
run_cmd += ' --log_with wandb'
wandb_api_key = kwargs.get("wandb_api_key", "")
if wandb_api_key:
run_cmd += f' --wandb_api_key="{wandb_api_key}"'
return run_cmd
def verify_image_folder_pattern(folder_path):
false_response = True # temporarily set to true to prevent stopping training in case of false positive
true_response = True
# Check if the folder exists
if not os.path.isdir(folder_path):
log.error(f"The provided path '{folder_path}' is not a valid folder. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Create a regular expression pattern to match the required sub-folder names
# The pattern should start with one or more digits (\d+) followed by an underscore (_)
# After the underscore, it should match one or more word characters (\w+), which can be letters, numbers, or underscores
# Example of a valid pattern matching name: 123_example_folder
pattern = r'^\d+_\w+'
# Get the list of sub-folders in the directory
subfolders = [
os.path.join(folder_path, subfolder)
for subfolder in os.listdir(folder_path)
if os.path.isdir(os.path.join(folder_path, subfolder))
]
# Check the pattern of each sub-folder
matching_subfolders = [subfolder for subfolder in subfolders if re.match(pattern, os.path.basename(subfolder))]
# Print non-matching sub-folders
non_matching_subfolders = set(subfolders) - set(matching_subfolders)
if non_matching_subfolders:
log.error(f"The following folders do not match the required pattern <number>_<text>: {', '.join(non_matching_subfolders)}")
log.error(f"Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Check if no sub-folders exist
if not matching_subfolders:
log.error(f"No image folders found in {folder_path}. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
log.info(f'Valid image folder names found in: {folder_path}')
return true_response
def SaveConfigFile(parameters, file_path: str, exclusion = ['file_path', 'save_as', 'headless', 'print_only']):
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in sorted(parameters, key=lambda x: x[0])
if name not in exclusion
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
def save_to_file(content):
file_path = 'logs/print_command.txt'
with open(file_path, 'a') as file:
file.write(content + '\n')