File size: 8,211 Bytes
11c2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
from easygui import diropenbox, msgbox
from .common_gui import get_folder_path
import shutil
import os

from library.custom_logging import setup_logging

# Set up logging
log = setup_logging()


def copy_info_to_Folders_tab(training_folder):
    img_folder = os.path.join(training_folder, 'img')
    if os.path.exists(os.path.join(training_folder, 'reg')):
        reg_folder = os.path.join(training_folder, 'reg')
    else:
        reg_folder = ''
    model_folder = os.path.join(training_folder, 'model')
    log_folder = os.path.join(training_folder, 'log')

    return img_folder, reg_folder, model_folder, log_folder


def dreambooth_folder_preparation(
    util_training_images_dir_input,
    util_training_images_repeat_input,
    util_instance_prompt_input,
    util_regularization_images_dir_input,
    util_regularization_images_repeat_input,
    util_class_prompt_input,
    util_training_dir_output,
):

    # Check if the input variables are empty
    if not len(util_training_dir_output):
        log.info(
            "Destination training directory is missing... can't perform the required task..."
        )
        return
    else:
        # Create the util_training_dir_output directory if it doesn't exist
        os.makedirs(util_training_dir_output, exist_ok=True)

    # Check for instance prompt
    if util_instance_prompt_input == '':
        msgbox('Instance prompt missing...')
        return

    # Check for class prompt
    if util_class_prompt_input == '':
        msgbox('Class prompt missing...')
        return

    # Create the training_dir path
    if util_training_images_dir_input == '':
        log.info(
            "Training images directory is missing... can't perform the required task..."
        )
        return
    else:
        training_dir = os.path.join(
            util_training_dir_output,
            f'img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}',
        )

        # Remove folders if they exist
        if os.path.exists(training_dir):
            log.info(f'Removing existing directory {training_dir}...')
            shutil.rmtree(training_dir)

        # Copy the training images to their respective directories
        log.info(f'Copy {util_training_images_dir_input} to {training_dir}...')
        shutil.copytree(util_training_images_dir_input, training_dir)

    if not util_regularization_images_dir_input == '':
        # Create the regularization_dir path
        if not util_regularization_images_repeat_input > 0:
            log.info('Repeats is missing... not copying regularisation images...')
        else:
            regularization_dir = os.path.join(
                util_training_dir_output,
                f'reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}',
            )

            # Remove folders if they exist
            if os.path.exists(regularization_dir):
                log.info(f'Removing existing directory {regularization_dir}...')
                shutil.rmtree(regularization_dir)

            # Copy the regularisation images to their respective directories
            log.info(
                f'Copy {util_regularization_images_dir_input} to {regularization_dir}...'
            )
            shutil.copytree(
                util_regularization_images_dir_input, regularization_dir
            )
    else:
        log.info(
            'Regularization images directory is missing... not copying regularisation images...'
        )

    # create log and model folder
    # Check if the log folder exists and create it if it doesn't
    if not os.path.exists(os.path.join(util_training_dir_output, 'log')):
        os.makedirs(os.path.join(util_training_dir_output, 'log'))

    # Check if the model folder exists and create it if it doesn't
    if not os.path.exists(os.path.join(util_training_dir_output, 'model')):
        os.makedirs(os.path.join(util_training_dir_output, 'model'))

    log.info(
        f'Done creating kohya_ss training folder structure at {util_training_dir_output}...'
    )


def gradio_dreambooth_folder_creation_tab(
    train_data_dir_input=gr.Textbox(),
    reg_data_dir_input=gr.Textbox(),
    output_dir_input=gr.Textbox(),
    logging_dir_input=gr.Textbox(),
    headless=False,
):
    with gr.Tab('Dreambooth/LoRA Folder preparation'):
        gr.Markdown(
            'This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth/LoRA method to function correctly.'
        )
        with gr.Row():
            util_instance_prompt_input = gr.Textbox(
                label='Instance prompt',
                placeholder='Eg: asd',
                interactive=True,
            )
            util_class_prompt_input = gr.Textbox(
                label='Class prompt',
                placeholder='Eg: person',
                interactive=True,
            )
        with gr.Row():
            util_training_images_dir_input = gr.Textbox(
                label='Training images',
                placeholder='Directory containing the training images',
                interactive=True,
            )
            button_util_training_images_dir_input = gr.Button(
                'πŸ“‚', elem_id='open_folder_small', visible=(not headless)
            )
            button_util_training_images_dir_input.click(
                get_folder_path,
                outputs=util_training_images_dir_input,
                show_progress=False,
            )
            util_training_images_repeat_input = gr.Number(
                label='Repeats',
                value=40,
                interactive=True,
                elem_id='number_input',
            )
        with gr.Row():
            util_regularization_images_dir_input = gr.Textbox(
                label='Regularisation images',
                placeholder='(Optional) Directory containing the regularisation images',
                interactive=True,
            )
            button_util_regularization_images_dir_input = gr.Button(
                'πŸ“‚', elem_id='open_folder_small', visible=(not headless)
            )
            button_util_regularization_images_dir_input.click(
                get_folder_path,
                outputs=util_regularization_images_dir_input,
                show_progress=False,
            )
            util_regularization_images_repeat_input = gr.Number(
                label='Repeats',
                value=1,
                interactive=True,
                elem_id='number_input',
            )
        with gr.Row():
            util_training_dir_output = gr.Textbox(
                label='Destination training directory',
                placeholder='Directory where formatted training and regularisation folders will be placed',
                interactive=True,
            )
            button_util_training_dir_output = gr.Button(
                'πŸ“‚', elem_id='open_folder_small', visible=(not headless)
            )
            button_util_training_dir_output.click(
                get_folder_path, outputs=util_training_dir_output
            )
        button_prepare_training_data = gr.Button('Prepare training data')
        button_prepare_training_data.click(
            dreambooth_folder_preparation,
            inputs=[
                util_training_images_dir_input,
                util_training_images_repeat_input,
                util_instance_prompt_input,
                util_regularization_images_dir_input,
                util_regularization_images_repeat_input,
                util_class_prompt_input,
                util_training_dir_output,
            ],
            show_progress=False,
        )
        button_copy_info_to_Folders_tab = gr.Button('Copy info to Folders Tab')
        button_copy_info_to_Folders_tab.click(
            copy_info_to_Folders_tab,
            inputs=[util_training_dir_output],
            outputs=[
                train_data_dir_input,
                reg_data_dir_input,
                output_dir_input,
                logging_dir_input,
            ],
            show_progress=False,
        )