thomasht86 commited on
Commit
6799751
·
1 Parent(s): c73f361
Files changed (7) hide show
  1. README.md +2 -2
  2. app.py +20 -73
  3. dataset.py +0 -19
  4. index.html +0 -0
  5. index.js +0 -126
  6. inference.py +0 -11
  7. style.css +0 -79
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Python + HTTP Server
3
  emoji: 🐍
4
  colorFrom: blue
5
  colorTo: yellow
@@ -7,7 +7,7 @@ sdk: gradio
7
  sdk_version: 4.36.0
8
  python_version: 3.10.4
9
  app_file: app.py
10
- models: [osanseviero/BigGAN-deep-128, t5-small]
11
  datasets: [emotion]
12
  license: mit
13
  pinned: false
 
1
  ---
2
+ title: Python FastHTML
3
  emoji: 🐍
4
  colorFrom: blue
5
  colorTo: yellow
 
7
  sdk_version: 4.36.0
8
  python_version: 3.10.4
9
  app_file: app.py
10
+ models: [t5-small]
11
  datasets: [emotion]
12
  license: mit
13
  pinned: false
app.py CHANGED
@@ -1,79 +1,26 @@
1
- import os
2
- import json
3
- import requests
4
- from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
5
- from urllib.parse import parse_qs, urlparse
6
 
7
- from inference import infer_t5
8
- from dataset import query_emotion
9
 
10
- # https://huggingface.co/settings/tokens
11
- # https://huggingface.co/spaces/{username}/{space}/settings
12
- API_TOKEN = os.getenv("BIG_GAN_TOKEN")
13
 
 
 
 
14
 
15
- class RequestHandler(SimpleHTTPRequestHandler):
16
- def do_GET(self):
17
- if self.path == "/":
18
- self.path = "index.html"
19
 
20
- return SimpleHTTPRequestHandler.do_GET(self)
 
 
 
 
 
 
 
21
 
22
- if self.path.startswith("/infer_biggan"):
23
- url = urlparse(self.path)
24
- query = parse_qs(url.query)
25
- input = query.get("input", None)[0]
26
-
27
- output = requests.request(
28
- "POST",
29
- "https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
30
- headers={"Authorization": f"Bearer {API_TOKEN}"},
31
- data=json.dumps(input),
32
- )
33
-
34
- self.send_response(200)
35
- self.send_header("Content-Type", "application/json")
36
- self.end_headers()
37
-
38
- self.wfile.write(output.content)
39
-
40
- return SimpleHTTPRequestHandler
41
-
42
- elif self.path.startswith("/infer_t5"):
43
- url = urlparse(self.path)
44
- query = parse_qs(url.query)
45
- input = query.get("input", None)[0]
46
-
47
- output = infer_t5(input)
48
-
49
- self.send_response(200)
50
- self.send_header("Content-Type", "application/json")
51
- self.end_headers()
52
-
53
- self.wfile.write(json.dumps({"output": output}).encode("utf-8"))
54
-
55
- return SimpleHTTPRequestHandler
56
-
57
- elif self.path.startswith("/query_emotion"):
58
- url = urlparse(self.path)
59
- query = parse_qs(url.query)
60
- start = int(query.get("start", None)[0])
61
- end = int(query.get("end", None)[0])
62
-
63
- output = query_emotion(start, end)
64
-
65
- self.send_response(200)
66
- self.send_header("Content-Type", "application/json")
67
- self.end_headers()
68
-
69
- self.wfile.write(json.dumps({"output": output}).encode("utf-8"))
70
-
71
- return SimpleHTTPRequestHandler
72
-
73
- else:
74
- return SimpleHTTPRequestHandler.do_GET(self)
75
-
76
-
77
- server = ThreadingHTTPServer(("", 7860), RequestHandler)
78
-
79
- server.serve_forever()
 
1
+ from fasthtml.common import *
 
 
 
 
2
 
3
+ # Add the HighlightJS built-in header
4
+ hdrs = (HighlightJS(langs=['python', 'javascript', 'html', 'css']),)
5
 
6
+ app, rt = fast_app(hdrs=hdrs)
 
 
7
 
8
+ code_example = """
9
+ import datetime
10
+ import time
11
 
12
+ for i in range(10):
13
+ print(f"{datetime.datetime.now()}")
14
+ time.sleep(1)
15
+ """
16
 
17
+ @rt('/')
18
+ def get(req):
19
+ return Titled("Markdown rendering example",
20
+ Div(
21
+ # The code example needs to be surrounded by
22
+ # Pre & Code elements
23
+ Pre(Code(code_example))
24
+ ))
25
 
26
+ serve(port=7680)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset.py DELETED
@@ -1,19 +0,0 @@
1
- from datasets import load_dataset
2
-
3
- dataset = load_dataset("go_emotions", split="train")
4
-
5
- emotions = dataset.info.features['labels'].feature.names
6
-
7
- def query_emotion(start, end):
8
- rows = dataset[start:end]
9
- texts, labels = [rows[k] for k in rows.keys()]
10
-
11
- observations = []
12
-
13
- for i, text in enumerate(texts):
14
- observations.append({
15
- "text": text,
16
- "emotion": emotions[labels[i]],
17
- })
18
-
19
- return observations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
index.html DELETED
The diff for this file is too large to render. See raw diff
 
index.js DELETED
@@ -1,126 +0,0 @@
1
- if (document.location.search.includes('dark-theme=true')) {
2
- document.body.classList.add('dark-theme');
3
- }
4
-
5
- let cursor = 0;
6
- const RANGE = 5;
7
- const LIMIT = 16_000;
8
-
9
- const textToImage = async (text) => {
10
- const inferenceResponse = await fetch(`infer_biggan?input=${text}`);
11
- const inferenceBlob = await inferenceResponse.blob();
12
-
13
- return URL.createObjectURL(inferenceBlob);
14
- };
15
-
16
- const translateText = async (text) => {
17
- const inferResponse = await fetch(`infer_t5?input=${text}`);
18
- const inferJson = await inferResponse.json();
19
-
20
- return inferJson.output;
21
- };
22
-
23
- const queryDataset = async (start, end) => {
24
- const queryResponse = await fetch(`query_emotion?start=${start}&end=${end}`);
25
- const queryJson = await queryResponse.json();
26
-
27
- return queryJson.output;
28
- };
29
-
30
- const updateTable = async (cursor, range = RANGE) => {
31
- const table = document.querySelector('.dataset-output');
32
-
33
- const fragment = new DocumentFragment();
34
-
35
- const observations = await queryDataset(cursor, cursor + range);
36
-
37
- for (const observation of observations) {
38
- let row = document.createElement('tr');
39
- let text = document.createElement('td');
40
- let emotion = document.createElement('td');
41
-
42
- text.textContent = observation.text;
43
- emotion.textContent = observation.emotion;
44
-
45
- row.appendChild(text);
46
- row.appendChild(emotion);
47
- fragment.appendChild(row);
48
- }
49
-
50
- table.innerHTML = '';
51
-
52
- table.appendChild(fragment);
53
-
54
- table.insertAdjacentHTML(
55
- 'afterbegin',
56
- `<thead>
57
- <tr>
58
- <td>text</td>
59
- <td>emotion</td>
60
- </tr>
61
- </thead>`
62
- );
63
- };
64
-
65
- const imageGenSelect = document.getElementById('image-gen-input');
66
- const imageGenImage = document.querySelector('.image-gen-output');
67
- const textGenForm = document.querySelector('.text-gen-form');
68
- const tableButtonPrev = document.querySelector('.table-previous');
69
- const tableButtonNext = document.querySelector('.table-next');
70
-
71
- imageGenSelect.addEventListener('change', async (event) => {
72
- const value = event.target.value;
73
-
74
- try {
75
- imageGenImage.src = await textToImage(value);
76
- imageGenImage.alt = value + ' generated from BigGAN AI model';
77
- } catch (err) {
78
- console.error(err);
79
- }
80
- });
81
-
82
- textGenForm.addEventListener('submit', async (event) => {
83
- event.preventDefault();
84
-
85
- const textGenInput = document.getElementById('text-gen-input');
86
- const textGenParagraph = document.querySelector('.text-gen-output');
87
-
88
- try {
89
- textGenParagraph.textContent = await translateText(textGenInput.value);
90
- } catch (err) {
91
- console.error(err);
92
- }
93
- });
94
-
95
- tableButtonPrev.addEventListener('click', () => {
96
- cursor = cursor > RANGE ? cursor - RANGE : 0;
97
-
98
- if (cursor < RANGE) {
99
- tableButtonPrev.classList.add('hidden');
100
- }
101
- if (cursor < LIMIT - RANGE) {
102
- tableButtonNext.classList.remove('hidden');
103
- }
104
-
105
- updateTable(cursor);
106
- });
107
-
108
- tableButtonNext.addEventListener('click', () => {
109
- cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
110
-
111
- if (cursor >= RANGE) {
112
- tableButtonPrev.classList.remove('hidden');
113
- }
114
- if (cursor >= LIMIT - RANGE) {
115
- tableButtonNext.classList.add('hidden');
116
- }
117
-
118
- updateTable(cursor);
119
- });
120
-
121
- textToImage(imageGenSelect.value)
122
- .then((image) => (imageGenImage.src = image))
123
- .catch(console.error);
124
-
125
- updateTable(cursor)
126
- .catch(console.error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference.py DELETED
@@ -1,11 +0,0 @@
1
- from transformers import T5Tokenizer, T5ForConditionalGeneration
2
-
3
- tokenizer = T5Tokenizer.from_pretrained("t5-small")
4
- model = T5ForConditionalGeneration.from_pretrained("t5-small")
5
-
6
-
7
- def infer_t5(input):
8
- input_ids = tokenizer(input, return_tensors="pt").input_ids
9
- outputs = model.generate(input_ids)
10
-
11
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
style.css DELETED
@@ -1,79 +0,0 @@
1
- body {
2
- --text: hsl(0 0% 15%);
3
- padding: 2.5rem;
4
- font-family: sans-serif;
5
- color: var(--text);
6
- }
7
- body.dark-theme {
8
- --text: hsl(0 0% 90%);
9
- background-color: hsl(223 39% 7%);
10
- }
11
-
12
- main {
13
- max-width: 80rem;
14
- text-align: center;
15
- }
16
-
17
- section {
18
- display: flex;
19
- flex-direction: column;
20
- align-items: center;
21
- }
22
-
23
- a {
24
- color: var(--text);
25
- }
26
-
27
- select, input, button, .text-gen-output {
28
- padding: 0.5rem 1rem;
29
- }
30
-
31
- select, img, input {
32
- margin: 0.5rem auto 1rem;
33
- }
34
-
35
- form {
36
- width: 25rem;
37
- margin: 0 auto;
38
- }
39
-
40
- input {
41
- width: 70%;
42
- }
43
-
44
- button {
45
- cursor: pointer;
46
- }
47
-
48
- .text-gen-output {
49
- min-height: 1.2rem;
50
- margin: 1rem;
51
- border: 0.5px solid grey;
52
- }
53
-
54
- #dataset button {
55
- width: 6rem;
56
- margin: 0.5rem;
57
- }
58
-
59
- #dataset button.hidden {
60
- visibility: hidden;
61
- }
62
-
63
- table {
64
- max-width: 40rem;
65
- text-align: left;
66
- border-collapse: collapse;
67
- }
68
-
69
- thead {
70
- font-weight: bold;
71
- }
72
-
73
- td {
74
- padding: 0.5rem;
75
- }
76
-
77
- td:not(thead td) {
78
- border: 0.5px solid grey;
79
- }