Spaces:
Running
on
T4
Running
on
T4
thomas-yanxin
commited on
Commit
·
5d583ec
1
Parent(s):
d246a39
增加Jina Embedding infernece
Browse files- app.py +50 -43
- requirements.txt +2 -1
app.py
CHANGED
@@ -8,6 +8,7 @@ from duckduckgo_search import ddg
|
|
8 |
from duckduckgo_search.utils import SESSION
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.document_loaders import UnstructuredFileLoader
|
|
|
11 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain.prompts.prompt import PromptTemplate
|
@@ -16,16 +17,13 @@ from langchain.vectorstores import FAISS
|
|
16 |
from chatllm import ChatLLM
|
17 |
from chinese_text_splitter import ChineseTextSplitter
|
18 |
|
19 |
-
# os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
nltk.data.path.append('./nltk_data')
|
24 |
|
25 |
embedding_model_dict = {
|
26 |
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
27 |
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
28 |
-
"text2vec-base": "GanymedeNil/text2vec-base-chinese"
|
|
|
29 |
}
|
30 |
|
31 |
llm_model_dict = {
|
@@ -35,22 +33,23 @@ llm_model_dict = {
|
|
35 |
"Minimax": "Minimax"
|
36 |
}
|
37 |
|
38 |
-
|
39 |
DEVICE = "cuda" if torch.cuda.is_available(
|
40 |
) else "mps" if torch.backends.mps.is_available() else "cpu"
|
41 |
|
|
|
42 |
def search_web(query):
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
def load_file(filepath):
|
56 |
if filepath.lower().endswith(".pdf"):
|
@@ -64,12 +63,17 @@ def load_file(filepath):
|
|
64 |
return docs
|
65 |
|
66 |
|
67 |
-
|
68 |
def init_knowledge_vector_store(embedding_model, filepath):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
docs = load_file(filepath)
|
75 |
|
@@ -110,7 +114,8 @@ def get_knowledge_based_answer(query,
|
|
110 |
if large_language_model == "Minimax":
|
111 |
chatLLM.model = 'Minimax'
|
112 |
else:
|
113 |
-
chatLLM.load_model(
|
|
|
114 |
chatLLM.temperature = temperature
|
115 |
chatLLM.top_p = top_p
|
116 |
|
@@ -185,26 +190,28 @@ if __name__ == "__main__":
|
|
185 |
label="large language model",
|
186 |
value="ChatGLM-6B-int4")
|
187 |
|
188 |
-
embedding_model = gr.Dropdown(list(
|
189 |
-
|
190 |
-
|
|
|
191 |
|
192 |
file = gr.File(label='请上传知识库文件, 目前支持txt、docx、md格式',
|
193 |
file_types=['.txt', '.md', '.docx'])
|
194 |
-
|
195 |
-
use_web = gr.Radio(["True", "False"],
|
196 |
-
|
197 |
-
|
198 |
model_argument = gr.Accordion("模型参数配置")
|
199 |
|
200 |
with model_argument:
|
201 |
|
202 |
-
VECTOR_SEARCH_TOP_K = gr.Slider(
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
HISTORY_LEN = gr.Slider(0,
|
210 |
3,
|
@@ -220,12 +227,11 @@ if __name__ == "__main__":
|
|
220 |
label="temperature",
|
221 |
interactive=True)
|
222 |
top_p = gr.Slider(0,
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
with gr.Column(scale=4):
|
231 |
chatbot = gr.Chatbot(label='ChatLLM').style(height=600)
|
@@ -240,7 +246,8 @@ if __name__ == "__main__":
|
|
240 |
inputs=[
|
241 |
message, large_language_model,
|
242 |
embedding_model, file, VECTOR_SEARCH_TOP_K,
|
243 |
-
HISTORY_LEN, temperature, top_p, use_web,
|
|
|
244 |
],
|
245 |
outputs=[message, chatbot, state])
|
246 |
clear_history.click(fn=clear_session,
|
@@ -253,7 +260,7 @@ if __name__ == "__main__":
|
|
253 |
message, large_language_model,
|
254 |
embedding_model, file,
|
255 |
VECTOR_SEARCH_TOP_K, HISTORY_LEN,
|
256 |
-
temperature, top_p, use_web,state
|
257 |
],
|
258 |
outputs=[message, chatbot, state])
|
259 |
gr.Markdown("""提醒:<br>
|
|
|
8 |
from duckduckgo_search.utils import SESSION
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.document_loaders import UnstructuredFileLoader
|
11 |
+
from langchain.embeddings import JinaEmbeddings
|
12 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
from langchain.prompts.prompt import PromptTemplate
|
|
|
17 |
from chatllm import ChatLLM
|
18 |
from chinese_text_splitter import ChineseTextSplitter
|
19 |
|
|
|
|
|
|
|
|
|
20 |
nltk.data.path.append('./nltk_data')
|
21 |
|
22 |
embedding_model_dict = {
|
23 |
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
24 |
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
25 |
+
"text2vec-base": "GanymedeNil/text2vec-base-chinese",
|
26 |
+
"ViT-B-32": 'ViT-B-32::laion2b-s34b-b79k'
|
27 |
}
|
28 |
|
29 |
llm_model_dict = {
|
|
|
33 |
"Minimax": "Minimax"
|
34 |
}
|
35 |
|
|
|
36 |
DEVICE = "cuda" if torch.cuda.is_available(
|
37 |
) else "mps" if torch.backends.mps.is_available() else "cpu"
|
38 |
|
39 |
+
|
40 |
def search_web(query):
|
41 |
|
42 |
+
SESSION.proxies = {
|
43 |
+
"http": f"socks5h://localhost:7890",
|
44 |
+
"https": f"socks5h://localhost:7890"
|
45 |
+
}
|
46 |
+
results = ddg(query)
|
47 |
+
web_content = ''
|
48 |
+
if results:
|
49 |
+
for result in results:
|
50 |
+
web_content += result['body']
|
51 |
+
return web_content
|
52 |
+
|
53 |
|
54 |
def load_file(filepath):
|
55 |
if filepath.lower().endswith(".pdf"):
|
|
|
63 |
return docs
|
64 |
|
65 |
|
|
|
66 |
def init_knowledge_vector_store(embedding_model, filepath):
|
67 |
+
if embedding_model == "ViT-B-32":
|
68 |
+
jina_auth_token = os.getenv('jina_auth_token')
|
69 |
+
embeddings = JinaEmbeddings(
|
70 |
+
jina_auth_token=jina_auth_token,
|
71 |
+
model_name=embedding_model_dict[embedding_model])
|
72 |
+
else:
|
73 |
+
embeddings = HuggingFaceEmbeddings(
|
74 |
+
model_name=embedding_model_dict[embedding_model], )
|
75 |
+
embeddings.client = sentence_transformers.SentenceTransformer(
|
76 |
+
embeddings.model_name, device=DEVICE)
|
77 |
|
78 |
docs = load_file(filepath)
|
79 |
|
|
|
114 |
if large_language_model == "Minimax":
|
115 |
chatLLM.model = 'Minimax'
|
116 |
else:
|
117 |
+
chatLLM.load_model(
|
118 |
+
model_name_or_path=llm_model_dict[large_language_model])
|
119 |
chatLLM.temperature = temperature
|
120 |
chatLLM.top_p = top_p
|
121 |
|
|
|
190 |
label="large language model",
|
191 |
value="ChatGLM-6B-int4")
|
192 |
|
193 |
+
embedding_model = gr.Dropdown(list(
|
194 |
+
embedding_model_dict.keys()),
|
195 |
+
label="Embedding model",
|
196 |
+
value="text2vec-base")
|
197 |
|
198 |
file = gr.File(label='请上传知识库文件, 目前支持txt、docx、md格式',
|
199 |
file_types=['.txt', '.md', '.docx'])
|
200 |
+
|
201 |
+
use_web = gr.Radio(["True", "False"],
|
202 |
+
label="Web Search",
|
203 |
+
value="False")
|
204 |
model_argument = gr.Accordion("模型参数配置")
|
205 |
|
206 |
with model_argument:
|
207 |
|
208 |
+
VECTOR_SEARCH_TOP_K = gr.Slider(
|
209 |
+
1,
|
210 |
+
10,
|
211 |
+
value=6,
|
212 |
+
step=1,
|
213 |
+
label="vector search top k",
|
214 |
+
interactive=True)
|
215 |
|
216 |
HISTORY_LEN = gr.Slider(0,
|
217 |
3,
|
|
|
227 |
label="temperature",
|
228 |
interactive=True)
|
229 |
top_p = gr.Slider(0,
|
230 |
+
1,
|
231 |
+
value=0.9,
|
232 |
+
step=0.1,
|
233 |
+
label="top_p",
|
234 |
+
interactive=True)
|
|
|
235 |
|
236 |
with gr.Column(scale=4):
|
237 |
chatbot = gr.Chatbot(label='ChatLLM').style(height=600)
|
|
|
246 |
inputs=[
|
247 |
message, large_language_model,
|
248 |
embedding_model, file, VECTOR_SEARCH_TOP_K,
|
249 |
+
HISTORY_LEN, temperature, top_p, use_web,
|
250 |
+
state
|
251 |
],
|
252 |
outputs=[message, chatbot, state])
|
253 |
clear_history.click(fn=clear_session,
|
|
|
260 |
message, large_language_model,
|
261 |
embedding_model, file,
|
262 |
VECTOR_SEARCH_TOP_K, HISTORY_LEN,
|
263 |
+
temperature, top_p, use_web, state
|
264 |
],
|
265 |
outputs=[message, chatbot, state])
|
266 |
gr.Markdown("""提醒:<br>
|
requirements.txt
CHANGED
@@ -15,4 +15,5 @@ gradio
|
|
15 |
nltk
|
16 |
torch
|
17 |
torchvision
|
18 |
-
|
|
|
|
15 |
nltk
|
16 |
torch
|
17 |
torchvision
|
18 |
+
protobuf==3.19
|
19 |
+
jina
|