Rohan Kataria commited on
Commit
5b0aecb
·
1 Parent(s): dc9eb63
Files changed (1) hide show
  1. src/main.py +8 -5
src/main.py CHANGED
@@ -16,7 +16,7 @@ from langchain.llms import OpenAI
16
  from langchain.memory import ConversationBufferMemory
17
  from langchain.vectorstores import Chroma
18
  from langchain.embeddings.openai import OpenAIEmbeddings
19
- from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
20
  import datetime
21
  import shutil
22
 
@@ -97,8 +97,7 @@ def retreival(vector_store, k):
97
  # Create the chat prompt templates
98
  messages = [
99
  SystemMessagePromptTemplate.from_template(system_template),
100
- MessagesPlaceholder(variable_name="chat_history"),
101
- HumanMessagePromptTemplate.from_template(human_template),
102
  # AIMessagePromptTemplate.from_template(ai_template)
103
  ]
104
 
@@ -121,7 +120,7 @@ def retreival(vector_store, k):
121
  memory=memory,
122
  return_source_documents=True, #When used these 2 properties, the output gets 3 properties: answer, source_document, source_document_score and then have to speocify input and output key in memory for it to work
123
  combine_docs_chain_kwargs=dict({"prompt": PROMPT})
124
- )
125
 
126
  return chain
127
 
@@ -139,5 +138,9 @@ class ConversationalResponse:
139
  self.chain = retreival(self.vector_store, self.k)
140
 
141
  def __call__(self, question):
142
- agent = self.chain(question)
 
 
 
 
143
  return agent['answer']
 
16
  from langchain.memory import ConversationBufferMemory
17
  from langchain.vectorstores import Chroma
18
  from langchain.embeddings.openai import OpenAIEmbeddings
19
+ from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate, ChatPromptTemplate
20
  import datetime
21
  import shutil
22
 
 
97
  # Create the chat prompt templates
98
  messages = [
99
  SystemMessagePromptTemplate.from_template(system_template),
100
+ HumanMessagePromptTemplate.from_template(human_template)
 
101
  # AIMessagePromptTemplate.from_template(ai_template)
102
  ]
103
 
 
120
  memory=memory,
121
  return_source_documents=True, #When used these 2 properties, the output gets 3 properties: answer, source_document, source_document_score and then have to speocify input and output key in memory for it to work
122
  combine_docs_chain_kwargs=dict({"prompt": PROMPT})
123
+ )
124
 
125
  return chain
126
 
 
138
  self.chain = retreival(self.vector_store, self.k)
139
 
140
  def __call__(self, question):
141
+ chat_history = []
142
+ agent = self.chain({"question": question
143
+ , "chat_history": chat_history
144
+ })
145
+ chat_history.append((question, agent['answer']))
146
  return agent['answer']