Spaces:
Runtime error
Runtime error
import gradio as gr | |
def main(): | |
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature): | |
return None, None | |
term_of_use = """ | |
### Terms of use | |
By using this model, users are required to agree to the following terms: | |
The model is intended for academic and research purposes. | |
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work. | |
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content. | |
### License | |
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct). | |
""" | |
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo: | |
gr.Markdown((""" | |
# Kosmos-2: Grounding Multimodal Large Language Models to the World | |
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2) | |
""")) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="Test Image") | |
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief") | |
do_sample = gr.Checkbox(label="Enable Sampling", info="(Please enable it before adjusting sampling parameters below)", value=False) | |
with gr.Accordion("Sampling parameters", open=False) as sampling_parameters: | |
sampling_topp = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.9, label="Sampling: Top-P") | |
sampling_temperature = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.7, label="Sampling: Temperature") | |
run_button = gr.Button(label="Run", visible=True) | |
with gr.Column(): | |
image_output = gr.Image(type="pil") | |
text_output1 = gr.HighlightedText( | |
label="Generated Description", | |
combine_adjacent=False, | |
show_legend=True, | |
).style(color_map={"box": "red"}) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples(examples=[ | |
["images/two_dogs.jpg", "Detailed", False], | |
["images/snowman.png", "Brief", False], | |
["images/man_ball.png", "Detailed", False], | |
], inputs=[image_input, text_input, do_sample]) | |
with gr.Column(): | |
gr.Examples(examples=[ | |
["images/six_planes.png", "Brief", False], | |
["images/quadrocopter.jpg", "Brief", False], | |
["images/carnaby_street.jpg", "Brief", False], | |
], inputs=[image_input, text_input, do_sample]) | |
gr.Markdown(term_of_use) | |
run_button.click(fn=generate_predictions, | |
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature], | |
outputs=[image_output, text_output1], | |
show_progress=True, queue=True) | |
demo.launch(share=True) | |
if __name__ == "__main__": | |
main() | |