File size: 21,075 Bytes
938411e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import os
import sys
import argparse
import subprocess
now_dir = os.getcwd()
sys.path.append(now_dir)
from rvc.configs.config import Config
from rvc.lib.tools.validators import (
validate_sampling_rate,
validate_f0up_key,
validate_f0method,
validate_true_false,
validate_tts_voices,
)
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.tools.pretrained_selector import pretrained_selector
from rvc.lib.process.model_fusion import model_fusion
from rvc.lib.process.model_information import model_information
config = Config()
current_script_directory = os.path.dirname(os.path.realpath(__file__))
logs_path = os.path.join(current_script_directory, "logs")
subprocess.run(
["python", os.path.join("rvc", "lib", "tools", "prerequisites_download.py")]
)
# Infer
def run_infer_script(
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
input_path,
output_path,
pth_file,
index_path,
split_audio,
):
infer_script_path = os.path.join("rvc", "infer", "infer.py")
command = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
input_path,
output_path,
pth_file,
index_path,
str(split_audio),
]
subprocess.run(command)
return f"File {input_path} inferred successfully.", output_path
# Batch infer
def run_batch_infer_script(
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
input_folder,
output_folder,
pth_file,
index_path,
):
infer_script_path = os.path.join("rvc", "infer", "infer.py")
audio_files = [
f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac"))
]
print(f"Detected {len(audio_files)} audio files for inference.")
for audio_file in audio_files:
if "_output" in audio_file:
pass
else:
input_path = os.path.join(input_folder, audio_file)
output_file_name = os.path.splitext(os.path.basename(audio_file))[0]
output_path = os.path.join(
output_folder,
f"{output_file_name}_output{os.path.splitext(audio_file)[1]}",
)
print(f"Inferring {input_path}...")
command = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
input_path,
output_path,
pth_file,
index_path,
]
subprocess.run(command)
return f"Files from {input_folder} inferred successfully."
# TTS
def run_tts_script(
tts_text,
tts_voice,
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
output_tts_path,
output_rvc_path,
pth_file,
index_path,
):
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py")
infer_script_path = os.path.join("rvc", "infer", "infer.py")
if os.path.exists(output_tts_path):
os.remove(output_tts_path)
command_tts = [
"python",
tts_script_path,
tts_text,
tts_voice,
output_tts_path,
]
command_infer = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
output_tts_path,
output_rvc_path,
pth_file,
index_path,
]
subprocess.run(command_tts)
subprocess.run(command_infer)
return f"Text {tts_text} synthesized successfully.", output_rvc_path
# Preprocess
def run_preprocess_script(model_name, dataset_path, sampling_rate):
per = 3.0 if config.is_half else 3.7
preprocess_script_path = os.path.join("rvc", "train", "preprocess", "preprocess.py")
command = [
"python",
preprocess_script_path,
os.path.join(logs_path, str(model_name)),
dataset_path,
str(sampling_rate),
str(per),
]
os.makedirs(os.path.join(logs_path, str(model_name)), exist_ok=True)
subprocess.run(command)
return f"Model {model_name} preprocessed successfully."
# Extract
def run_extract_script(model_name, rvc_version, f0method, hop_length, sampling_rate):
model_path = os.path.join(logs_path, str(model_name))
extract_f0_script_path = os.path.join(
"rvc", "train", "extract", "extract_f0_print.py"
)
extract_feature_script_path = os.path.join(
"rvc", "train", "extract", "extract_feature_print.py"
)
command_1 = [
"python",
extract_f0_script_path,
model_path,
f0method,
str(hop_length),
]
command_2 = [
"python",
extract_feature_script_path,
config.device,
"1",
"0",
"0",
model_path,
rvc_version,
"True",
]
subprocess.run(command_1)
subprocess.run(command_2)
generate_config(rvc_version, sampling_rate, model_path)
generate_filelist(f0method, model_path, rvc_version, sampling_rate)
return f"Model {model_name} extracted successfully."
# Train
def run_train_script(
model_name,
rvc_version,
save_every_epoch,
save_only_latest,
save_every_weights,
total_epoch,
sampling_rate,
batch_size,
gpu,
pitch_guidance,
pretrained,
custom_pretrained,
g_pretrained_path=None,
d_pretrained_path=None,
):
f0 = 1 if pitch_guidance == "True" else 0
latest = 1 if save_only_latest == "True" else 0
save_every = 1 if save_every_weights == "True" else 0
if pretrained == "True":
if custom_pretrained == "False":
pg, pd = pretrained_selector(f0)[rvc_version][sampling_rate]
else:
if g_pretrained_path is None or d_pretrained_path is None:
raise ValueError(
"Please provide the path to the pretrained G and D models."
)
pg, pd = g_pretrained_path, d_pretrained_path
else:
pg, pd = "", ""
train_script_path = os.path.join("rvc", "train", "train.py")
command = [
"python",
train_script_path,
"-se",
str(save_every_epoch),
"-te",
str(total_epoch),
"-pg",
pg,
"-pd",
pd,
"-sr",
str(sampling_rate),
"-bs",
str(batch_size),
"-g",
gpu,
"-e",
os.path.join(logs_path, str(model_name)),
"-v",
rvc_version,
"-l",
str(latest),
"-c",
"0",
"-sw",
str(save_every),
"-f0",
str(f0),
]
subprocess.run(command)
run_index_script(model_name, rvc_version)
return f"Model {model_name} trained successfully."
# Index
def run_index_script(model_name, rvc_version):
index_script_path = os.path.join("rvc", "train", "index_generator.py")
command = [
"python",
index_script_path,
os.path.join(logs_path, str(model_name)),
rvc_version,
]
subprocess.run(command)
return f"Index file for {model_name} generated successfully."
# Model information
def run_model_information_script(pth_path):
print(model_information(pth_path))
# Model fusion
def run_model_fusion_script(model_name, pth_path_1, pth_path_2):
model_fusion(model_name, pth_path_1, pth_path_2)
# Tensorboard
def run_tensorboard_script():
tensorboard_script_path = os.path.join(
"rvc", "lib", "tools", "launch_tensorboard.py"
)
command = [
"python",
tensorboard_script_path,
]
subprocess.run(command)
# Download
def run_download_script(model_link):
download_script_path = os.path.join("rvc", "lib", "tools", "model_download.py")
command = [
"python",
download_script_path,
model_link,
]
subprocess.run(command)
return f"Model downloaded successfully."
# Parse arguments
def parse_arguments():
parser = argparse.ArgumentParser(
description="Run the main.py script with specific parameters."
)
subparsers = parser.add_subparsers(
title="subcommands", dest="mode", help="Choose a mode"
)
# Parser for 'infer' mode
infer_parser = subparsers.add_parser("infer", help="Run inference")
infer_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
infer_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
infer_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
infer_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
infer_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
infer_parser.add_argument(
"input_path", type=str, help="Input path (enclose in double quotes)"
)
infer_parser.add_argument(
"output_path", type=str, help="Output path (enclose in double quotes)"
)
infer_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
infer_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
infer_parser.add_argument(
"split_audio",
type=str,
help="Enable split audio ( better results )",
)
# Parser for 'batch_infer' mode
batch_infer_parser = subparsers.add_parser(
"batch_infer", help="Run batch inference"
)
batch_infer_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
batch_infer_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
batch_infer_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
batch_infer_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
batch_infer_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
batch_infer_parser.add_argument(
"input_folder", type=str, help="Input folder (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"output_folder", type=str, help="Output folder (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
# Parser for 'tts' mode
tts_parser = subparsers.add_parser("tts", help="Run TTS")
tts_parser.add_argument(
"tts_text",
type=str,
help="Text to be synthesized (enclose in double quotes)",
)
tts_parser.add_argument(
"tts_voice",
type=validate_tts_voices,
help="Voice to be used (enclose in double quotes)",
)
tts_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
tts_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
tts_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
tts_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
tts_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
tts_parser.add_argument(
"output_tts_path", type=str, help="Output tts path (enclose in double quotes)"
)
tts_parser.add_argument(
"output_rvc_path", type=str, help="Output rvc path (enclose in double quotes)"
)
tts_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
tts_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
# Parser for 'preprocess' mode
preprocess_parser = subparsers.add_parser("preprocess", help="Run preprocessing")
preprocess_parser.add_argument(
"model_name", type=str, help="Name of the model (enclose in double quotes)"
)
preprocess_parser.add_argument(
"dataset_path",
type=str,
help="Path to the dataset (enclose in double quotes)",
)
preprocess_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000 or 48000)",
)
# Parser for 'extract' mode
extract_parser = subparsers.add_parser("extract", help="Run extract")
extract_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
extract_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
extract_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, mangio-crepe, mangio-crepe-tiny, harvest, rmvpe)",
)
extract_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
extract_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000 or 48000)",
)
# Parser for 'train' mode
train_parser = subparsers.add_parser("train", help="Run training")
train_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
train_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
train_parser.add_argument(
"save_every_epoch",
type=str,
help="Save every epoch",
)
train_parser.add_argument(
"save_only_latest",
type=str,
help="Save weight only at last epoch",
)
train_parser.add_argument(
"save_every_weights",
type=str,
help="Save weight every epoch",
)
train_parser.add_argument(
"total_epoch",
type=str,
help="Total epoch",
)
train_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000, or 48000)",
)
train_parser.add_argument(
"batch_size",
type=str,
help="Batch size",
)
train_parser.add_argument(
"gpu",
type=str,
help="GPU number (0 to 10 separated by -)",
)
train_parser.add_argument(
"pitch_guidance",
type=validate_true_false,
help="Pitch guidance (True or False)",
)
train_parser.add_argument(
"pretrained",
type=validate_true_false,
help="Pretrained (True or False)",
)
train_parser.add_argument(
"custom_pretrained",
type=validate_true_false,
help="Custom pretrained (True or False)",
)
train_parser.add_argument(
"g_pretrained_path",
type=str,
nargs="?",
default=None,
help="Path to the pretrained G file (enclose in double quotes)",
)
train_parser.add_argument(
"d_pretrained_path",
type=str,
nargs="?",
default=None,
help="Path to the pretrained D file (enclose in double quotes)",
)
# Parser for 'index' mode
index_parser = subparsers.add_parser("index", help="Generate index file")
index_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
index_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
# Parser for 'model_information' mode
model_information_parser = subparsers.add_parser(
"model_information", help="Print model information"
)
model_information_parser.add_argument(
"pth_path",
type=str,
help="Path to the .pth file (enclose in double quotes)",
)
# Parser for 'model_fusion' mode
model_fusion_parser = subparsers.add_parser("model_fusion", help="Fuse two models")
model_fusion_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
model_fusion_parser.add_argument(
"pth_path_1",
type=str,
help="Path to the first .pth file (enclose in double quotes)",
)
model_fusion_parser.add_argument(
"pth_path_2",
type=str,
help="Path to the second .pth file (enclose in double quotes)",
)
# Parser for 'tensorboard' mode
subparsers.add_parser("tensorboard", help="Run tensorboard")
# Parser for 'download' mode
download_parser = subparsers.add_parser("download", help="Download models")
download_parser.add_argument(
"model_link",
type=str,
help="Link of the model (enclose in double quotes)",
)
return parser.parse_args()
def main():
if len(sys.argv) == 1:
print("Please run the script with '-h' for more information.")
sys.exit(1)
args = parse_arguments()
try:
if args.mode == "infer":
run_infer_script(
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.input_path,
args.output_path,
args.pth_file,
args.index_path,
args.split_audio,
)
elif args.mode == "batch_infer":
run_batch_infer_script(
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.input_folder,
args.output_folder,
args.pth_file,
args.index_path,
)
elif args.mode == "tts":
run_tts_script(
args.tts_text,
args.tts_voice,
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.output_tts_path,
args.output_rvc_path,
args.pth_file,
args.index_path,
)
elif args.mode == "preprocess":
run_preprocess_script(
args.model_name,
args.dataset_path,
str(args.sampling_rate),
)
elif args.mode == "extract":
run_extract_script(
args.model_name,
args.rvc_version,
args.f0method,
args.hop_length,
args.sampling_rate,
)
elif args.mode == "train":
run_train_script(
args.model_name,
args.rvc_version,
args.save_every_epoch,
args.save_only_latest,
args.save_every_weights,
args.total_epoch,
args.sampling_rate,
args.batch_size,
args.gpu,
args.pitch_guidance,
args.pretrained,
args.custom_pretrained,
args.g_pretrained_path,
args.d_pretrained_path,
)
elif args.mode == "index":
run_index_script(
args.model_name,
args.rvc_version,
)
elif args.mode == "model_information":
run_model_information_script(
args.pth_path,
)
elif args.mode == "model_fusion":
run_model_fusion_script(
args.model_name,
args.pth_path_1,
args.pth_path_2,
)
elif args.mode == "tensorboard":
run_tensorboard_script()
elif args.mode == "download":
run_download_script(
args.model_link,
)
except Exception as error:
print(f"Error: {error}")
if __name__ == "__main__":
main()
|