Spaces:
Runtime error
Runtime error
import sys | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
BitsAndBytesConfig, | |
) | |
import torch | |
MODEL = "microsoft/Phi-3.5-mini-instruct" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif sys.platform == "darwin" and torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
# TODO understand this | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=quantization_config, | |
) | |
def stream_chat( | |
message: str, | |
history: list, | |
system_prompt: str, | |
temperature: float = 0.8, | |
max_new_tokens: int = 1024, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
): | |
print(f"message: {message}") | |
print(f"history: {history}") | |
conversation = [{"role": "system", "content": system_prompt}] | |
for prompt, answer in history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
conversation, add_generation_prompt=True, return_tensors="pt" | |
).to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
eos_token_id=[128001, 128008, 128009], | |
streamer=streamer, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
stream_chat, | |
additional_inputs=[ | |
gr.Textbox(value="You are an ARM Assembly language decoder. You receive a line of Arm assembly and respond with a description of what the instruction does.", label="System message"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |