Spaces:
Running
Running
""" | |
Modified version from codeformer-pip project | |
S-Lab License 1.0 | |
Copyright 2022 S-Lab | |
https://github.com/kadirnar/codeformer-pip/blob/main/LICENSE | |
""" | |
import os | |
import cv2 | |
import torch | |
from codeformer.facelib.detection import init_detection_model | |
from codeformer.facelib.parsing import init_parsing_model | |
from torchvision.transforms.functional import normalize | |
from codeformer.basicsr.archs.rrdbnet_arch import RRDBNet | |
from codeformer.basicsr.utils import img2tensor, imwrite, tensor2img | |
from codeformer.basicsr.utils.download_util import load_file_from_url | |
from codeformer.basicsr.utils.realesrgan_utils import RealESRGANer | |
from codeformer.basicsr.utils.registry import ARCH_REGISTRY | |
from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper | |
from codeformer.facelib.utils.misc import is_gray | |
import threading | |
from plugins.codeformer_face_helper_cv2 import FaceRestoreHelperOptimized | |
THREAD_LOCK_FACE_HELPER = threading.Lock() | |
THREAD_LOCK_FACE_HELPER_CREATE = threading.Lock() | |
THREAD_LOCK_FACE_HELPER_PROCERSSING = threading.Lock() | |
THREAD_LOCK_CODEFORMER_NET = threading.Lock() | |
THREAD_LOCK_CODEFORMER_NET_CREATE = threading.Lock() | |
THREAD_LOCK_BGUPSAMPLER = threading.Lock() | |
pretrain_model_url = { | |
"codeformer": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth", | |
"detection": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth", | |
"parsing": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth", | |
"realesrgan": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", | |
} | |
# download weights | |
if not os.path.exists("models/CodeFormer/codeformer.pth"): | |
load_file_from_url( | |
url=pretrain_model_url["codeformer"], model_dir="models/CodeFormer/", progress=True, file_name=None | |
) | |
if not os.path.exists("models/CodeFormer/facelib/detection_Resnet50_Final.pth"): | |
load_file_from_url( | |
url=pretrain_model_url["detection"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None | |
) | |
if not os.path.exists("models/CodeFormer/facelib/parsing_parsenet.pth"): | |
load_file_from_url( | |
url=pretrain_model_url["parsing"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None | |
) | |
if not os.path.exists("models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth"): | |
load_file_from_url( | |
url=pretrain_model_url["realesrgan"], model_dir="models/CodeFormer/realesrgan", progress=True, file_name=None | |
) | |
def imread(img_path): | |
img = cv2.imread(img_path) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img | |
# set enhancer with RealESRGAN | |
def set_realesrgan(): | |
half = True if torch.cuda.is_available() else False | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=2, | |
) | |
upsampler = RealESRGANer( | |
scale=2, | |
model_path="models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth", | |
model=model, | |
tile=400, | |
tile_pad=40, | |
pre_pad=0, | |
half=half, | |
) | |
return upsampler | |
upsampler = set_realesrgan() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
codeformers_cache = [] | |
def get_codeformer(): | |
if len(codeformers_cache) > 0: | |
with THREAD_LOCK_CODEFORMER_NET: | |
if len(codeformers_cache) > 0: | |
return codeformers_cache.pop() | |
with THREAD_LOCK_CODEFORMER_NET_CREATE: | |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")( | |
dim_embd=512, | |
codebook_size=1024, | |
n_head=8, | |
n_layers=9, | |
connect_list=["32", "64", "128", "256"], | |
).to(device) | |
ckpt_path = "models/CodeFormer/codeformer.pth" | |
checkpoint = torch.load(ckpt_path)["params_ema"] | |
codeformer_net.load_state_dict(checkpoint) | |
codeformer_net.eval() | |
return codeformer_net | |
def release_codeformer(codeformer): | |
with THREAD_LOCK_CODEFORMER_NET: | |
codeformers_cache.append(codeformer) | |
#os.makedirs("output", exist_ok=True) | |
# ------- face restore thread cache ---------- | |
face_restore_helper_cache = [] | |
detection_model = "retinaface_resnet50" | |
inited_face_restore_helper_nn = False | |
import time | |
def get_face_restore_helper(upscale): | |
global inited_face_restore_helper_nn | |
with THREAD_LOCK_FACE_HELPER: | |
face_helper = FaceRestoreHelperOptimized( | |
upscale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model=detection_model, | |
save_ext="png", | |
use_parse=True, | |
device=device, | |
) | |
#return face_helper | |
if inited_face_restore_helper_nn: | |
while len(face_restore_helper_cache) == 0: | |
time.sleep(0.05) | |
face_detector, face_parse = face_restore_helper_cache.pop() | |
face_helper.face_detector = face_detector | |
face_helper.face_parse = face_parse | |
return face_helper | |
else: | |
inited_face_restore_helper_nn = True | |
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) | |
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) | |
return face_helper | |
def get_face_restore_helper2(upscale): # still not work well!!! | |
face_helper = FaceRestoreHelperOptimized( | |
upscale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model=detection_model, | |
save_ext="png", | |
use_parse=True, | |
device=device, | |
) | |
#return face_helper | |
if len(face_restore_helper_cache) > 0: | |
with THREAD_LOCK_FACE_HELPER: | |
if len(face_restore_helper_cache) > 0: | |
face_detector, face_parse = face_restore_helper_cache.pop() | |
face_helper.face_detector = face_detector | |
face_helper.face_parse = face_parse | |
return face_helper | |
with THREAD_LOCK_FACE_HELPER_CREATE: | |
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) | |
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) | |
return face_helper | |
def release_face_restore_helper(face_helper): | |
#return | |
#with THREAD_LOCK_FACE_HELPER: | |
face_restore_helper_cache.append((face_helper.face_detector, face_helper.face_parse)) | |
#pass | |
def inference_app(image, background_enhance, face_upsample, upscale, codeformer_fidelity, skip_if_no_face = False): | |
# take the default setting for the demo | |
has_aligned = False | |
only_center_face = False | |
draw_box = False | |
#print("Inp:", image, background_enhance, face_upsample, upscale, codeformer_fidelity) | |
if isinstance(image, str): | |
img = cv2.imread(str(image), cv2.IMREAD_COLOR) | |
else: | |
img = image | |
#print("\timage size:", img.shape) | |
upscale = int(upscale) # convert type to int | |
if upscale > 4: # avoid memory exceeded due to too large upscale | |
upscale = 4 | |
if upscale > 2 and max(img.shape[:2]) > 1000: # avoid memory exceeded due to too large img resolution | |
upscale = 2 | |
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution | |
upscale = 1 | |
background_enhance = False | |
#face_upsample = False | |
face_helper = get_face_restore_helper(upscale) | |
bg_upsampler = upsampler if background_enhance else None | |
face_upsampler = upsampler if face_upsample else None | |
if has_aligned: | |
# the input faces are already cropped and aligned | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
face_helper.is_gray = is_gray(img, threshold=5) | |
if face_helper.is_gray: | |
print("\tgrayscale input: True") | |
face_helper.cropped_faces = [img] | |
else: | |
with THREAD_LOCK_FACE_HELPER_PROCERSSING: | |
face_helper.read_image(img) | |
# get face landmarks for each face | |
num_det_faces = face_helper.get_face_landmarks_5( | |
only_center_face=only_center_face, resize=640, eye_dist_threshold=5 | |
) | |
#print(f"\tdetect {num_det_faces} faces") | |
if num_det_faces == 0 and skip_if_no_face: | |
release_face_restore_helper(face_helper) | |
return img | |
# align and warp each face | |
face_helper.align_warp_face() | |
# face restoration for each cropped face | |
for idx, cropped_face in enumerate(face_helper.cropped_faces): | |
# prepare data | |
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
codeformer_net = get_codeformer() | |
try: | |
with torch.no_grad(): | |
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
except RuntimeError as error: | |
print(f"Failed inference for CodeFormer: {error}") | |
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
release_codeformer(codeformer_net) | |
restored_face = restored_face.astype("uint8") | |
face_helper.add_restored_face(restored_face) | |
# paste_back | |
if not has_aligned: | |
# upsample the background | |
if bg_upsampler is not None: | |
with THREAD_LOCK_BGUPSAMPLER: | |
# Now only support RealESRGAN for upsampling background | |
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] | |
else: | |
bg_img = None | |
face_helper.get_inverse_affine(None) | |
# paste each restored face to the input image | |
if face_upsample and face_upsampler is not None: | |
restored_img = face_helper.paste_faces_to_input_image( | |
upsample_img=bg_img, | |
draw_box=draw_box, | |
face_upsampler=face_upsampler, | |
) | |
else: | |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box) | |
if image.shape != restored_img.shape: | |
h, w, _ = image.shape | |
restored_img = cv2.resize(restored_img, (w, h), interpolation=cv2.INTER_LINEAR) | |
release_face_restore_helper(face_helper) | |
# save restored img | |
if isinstance(image, str): | |
save_path = f"output/out.png" | |
imwrite(restored_img, str(save_path)) | |
return save_path | |
else: | |
return restored_img | |