File size: 20,689 Bytes
ffa9e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import math
from os.path import basename, dirname, join, isfile
import torch
from torch import nn
from torch.nn import functional as nnf
from torch.nn.modules.activation import ReLU


def get_prompt_list(prompt):
    if prompt == 'plain':
        return ['{}']    
    elif prompt == 'fixed':
        return ['a photo of a {}.']
    elif prompt == 'shuffle':
        return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
    elif prompt == 'shuffle+':
        return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
                            'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
                            'a bad photo of a {}.', 'a photo of the {}.']
    else:
        raise ValueError('Invalid value for prompt')        


def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
    """ 
    Simplified version of multihead attention (taken from torch source code but without tons of if clauses). 
    The mlp and layer norm come from CLIP.
    x: input.
    b: multihead attention module. 
    """

    x_ = b.ln_1(x)
    q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
    tgt_len, bsz, embed_dim = q.size()

    head_dim = embed_dim // b.attn.num_heads
    scaling = float(head_dim) ** -0.5

    q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
    k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
    v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)

    q = q * scaling

    attn_output_weights = torch.bmm(q, k.transpose(1, 2)) #  n_heads * batch_size, tokens^2, tokens^2
    if attn_mask is not None:


        attn_mask_type, attn_mask = attn_mask
        n_heads = attn_output_weights.size(0) // attn_mask.size(0)
        attn_mask = attn_mask.repeat(n_heads, 1)
        
        if attn_mask_type == 'cls_token':
            # the mask only affects similarities compared to the readout-token.
            attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
            # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]

        if attn_mask_type == 'all':
            # print(attn_output_weights.shape, attn_mask[:, None].shape)
            attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
        
    
    attn_output_weights = torch.softmax(attn_output_weights, dim=-1)

    attn_output = torch.bmm(attn_output_weights, v)
    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
    attn_output = b.attn.out_proj(attn_output)

    x = x + attn_output
    x = x + b.mlp(b.ln_2(x))

    if with_aff:
        return x, attn_output_weights
    else:
        return x


class CLIPDenseBase(nn.Module):

    def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
        super().__init__()

        import clip

        # prec = torch.FloatTensor
        self.clip_model, _ = clip.load(version, device='cpu', jit=False)
        self.model = self.clip_model.visual

        # if not None, scale conv weights such that we obtain n_tokens.
        self.n_tokens = n_tokens

        for p in self.clip_model.parameters():
            p.requires_grad_(False)

        # conditional
        if reduce_cond is not None:
            self.reduce_cond = nn.Linear(512, reduce_cond)
            for p in self.reduce_cond.parameters():
                p.requires_grad_(False)
        else:
            self.reduce_cond = None        

        self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
        self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
        
        self.reduce = nn.Linear(768, reduce_dim)

        self.prompt_list = get_prompt_list(prompt)     

        # precomputed prompts
        import pickle
        if isfile('precomputed_prompt_vectors.pickle'):
            precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
            self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}        
        else:
            self.precomputed_prompts = dict()
    
    def rescaled_pos_emb(self, new_size):
        assert len(new_size) == 2

        a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
        b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
        return torch.cat([self.model.positional_embedding[:1], b])

    def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
        

        with torch.no_grad():

            inp_size = x_inp.shape[2:]

            if self.n_tokens is not None:
                stride2 = x_inp.shape[2] // self.n_tokens
                conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
                x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
            else:
                x = self.model.conv1(x_inp)  # shape = [*, width, grid, grid]

            x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
            x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

            x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]

            standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197

            if x.shape[1] != standard_n_tokens:
                new_shape = int(math.sqrt(x.shape[1]-1))
                x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
            else:
                x = x + self.model.positional_embedding.to(x.dtype)

            x = self.model.ln_pre(x)

            x = x.permute(1, 0, 2)  # NLD -> LND

            activations, affinities = [], []
            for i, res_block in enumerate(self.model.transformer.resblocks):
                
                if mask is not None:
                    mask_layer, mask_type, mask_tensor = mask
                    if mask_layer == i or mask_layer == 'all':
                        # import ipdb; ipdb.set_trace()
                        size = int(math.sqrt(x.shape[0] - 1))
                        
                        attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
                        
                    else:
                        attn_mask = None
                else:
                    attn_mask = None

                x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)

                if i in extract_layers:
                    affinities += [aff_per_head]

                    #if self.n_tokens is not None:
                    #    activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
                    #else:
                    activations += [x]

                if len(extract_layers) > 0 and i == max(extract_layers) and skip:
                    print('early skip')
                    break
                
            x = x.permute(1, 0, 2)  # LND -> NLD
            x = self.model.ln_post(x[:, 0, :])

            if self.model.proj is not None:
                x = x @ self.model.proj

            return x, activations, affinities

    def sample_prompts(self, words, prompt_list=None):

        prompt_list = prompt_list if prompt_list is not None else self.prompt_list

        prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
        prompts = [prompt_list[i] for i in prompt_indices]
        return [promt.format(w) for promt, w in zip(prompts, words)]

    def get_cond_vec(self, conditional, batch_size):
        # compute conditional from a single string
        if conditional is not None and type(conditional) == str:
            cond = self.compute_conditional(conditional)
            cond = cond.repeat(batch_size, 1)

        # compute conditional from string list/tuple
        elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
            assert len(conditional) == batch_size
            cond = self.compute_conditional(conditional)

        # use conditional directly
        elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
            cond = conditional

        # compute conditional from image
        elif conditional is not None and type(conditional) == torch.Tensor:
            with torch.no_grad():
                cond, _, _ = self.visual_forward(conditional)
        else:
            raise ValueError('invalid conditional')
        return cond   

    def compute_conditional(self, conditional):
        import clip

        dev = next(self.parameters()).device

        if type(conditional) in {list, tuple}:
            text_tokens = clip.tokenize(conditional).to(dev)
            cond = self.clip_model.encode_text(text_tokens)
        else:
            if conditional in self.precomputed_prompts:
                cond = self.precomputed_prompts[conditional].float().to(dev)
            else:
                text_tokens = clip.tokenize([conditional]).to(dev)
                cond = self.clip_model.encode_text(text_tokens)[0]
        
        if self.shift_vector is not None:
            return cond + self.shift_vector
        else:
            return cond


def clip_load_untrained(version):
    assert version == 'ViT-B/16'
    from clip.model import CLIP
    from clip.clip import _MODELS, _download
    model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
    state_dict = model.state_dict()

    vision_width = state_dict["visual.conv1.weight"].shape[0]
    vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
    vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
    grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
    image_resolution = vision_patch_size * grid_size
    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))

    return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, 
        context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)    


class CLIPDensePredT(CLIPDenseBase):

    def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', 
                 extra_blocks=0, reduce_cond=None, fix_shift=False,
                 learn_trans_conv_only=False,  limit_to_clip_only=False, upsample=False, 
                 add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
        
        super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
        # device = 'cpu'

        self.extract_layers = extract_layers
        self.cond_layer = cond_layer
        self.limit_to_clip_only = limit_to_clip_only
        self.process_cond = None
        self.rev_activations = rev_activations
        
        depth = len(extract_layers)

        if add_calibration:
            self.calibration_conds = 1

        self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None

        self.add_activation1 = True

        self.version = version
        
        self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]

        if fix_shift:
            # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
            self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
            # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
        else:
            self.shift_vector = None

        if trans_conv is None:
            trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
        else:
            # explicitly define transposed conv kernel size
            trans_conv_ks = (trans_conv, trans_conv)

        if not complex_trans_conv:
            self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
        else:
            assert trans_conv_ks[0] == trans_conv_ks[1]

            tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)

            self.trans_conv = nn.Sequential(
                nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
                nn.ReLU(),
                nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
                nn.ReLU(),
                nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),               
            )

#        self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
        
        assert len(self.extract_layers) == depth

        self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
        self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
        self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
        
        # refinement and trans conv

        if learn_trans_conv_only:
            for p in self.parameters():
                p.requires_grad_(False)
            
            for p in self.trans_conv.parameters():
                p.requires_grad_(True)

        self.prompt_list = get_prompt_list(prompt)


    def forward(self, inp_image, conditional=None, return_features=False, mask=None):

        assert type(return_features) == bool

        inp_image = inp_image.to(self.model.positional_embedding.device)

        if mask is not None:
            raise ValueError('mask not supported')

        # x_inp = normalize(inp_image)
        x_inp = inp_image

        bs, dev = inp_image.shape[0], x_inp.device

        cond = self.get_cond_vec(conditional, bs)

        visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))

        activation1 = activations[0]
        activations = activations[1:]

        _activations = activations[::-1] if not self.rev_activations else activations

        a = None
        for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
            
            if a is not None:
                a = reduce(activation) + a
            else:
                a = reduce(activation)

            if i == self.cond_layer:
                if self.reduce_cond is not None:
                    cond = self.reduce_cond(cond)
                
                a = self.film_mul(cond) * a + self.film_add(cond)

            a = block(a)

        for block in self.extra_blocks:
            a = a + block(a)

        a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens

        size = int(math.sqrt(a.shape[2]))

        a = a.view(bs, a.shape[1], size, size)

        a = self.trans_conv(a)

        if self.n_tokens is not None:
            a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True) 

        if self.upsample_proj is not None:
            a = self.upsample_proj(a)
            a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')

        if return_features:
            return a, visual_q, cond, [activation1] + activations
        else:
            return a,



class CLIPDensePredTMasked(CLIPDensePredT):

    def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, 
                 prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False, 
                 refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):

        super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim, 
                         n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond, 
                         fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
                         limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
                         n_tokens=n_tokens)

    def visual_forward_masked(self, img_s, seg_s):
        return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))

    def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):

        if seg_s is None:
            cond = cond_or_img_s
        else:
            img_s = cond_or_img_s

            with torch.no_grad():
                cond, _, _ = self.visual_forward_masked(img_s, seg_s)

        return super().forward(img_q, cond, return_features=return_features)



class CLIPDenseBaseline(CLIPDenseBase):

    def __init__(self, version='ViT-B/32', cond_layer=0, 
                extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed', 
                 reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
        
        super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
        device = 'cpu'

        # self.cond_layer = cond_layer
        self.extract_layer = extract_layer
        self.limit_to_clip_only = limit_to_clip_only
        self.shift_vector = None

        self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
        
        assert reduce2_dim is not None

        self.reduce2 = nn.Sequential(
            nn.Linear(reduce_dim, reduce2_dim),
            nn.ReLU(),
            nn.Linear(reduce2_dim, reduce_dim)
        )
        
        trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
        self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)


    def forward(self, inp_image, conditional=None, return_features=False):

        inp_image = inp_image.to(self.model.positional_embedding.device)

        # x_inp = normalize(inp_image)
        x_inp = inp_image

        bs, dev = inp_image.shape[0], x_inp.device

        cond = self.get_cond_vec(conditional, bs)

        visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])

        a = activations[0]
        a = self.reduce(a)
        a = self.film_mul(cond) * a + self.film_add(cond)

        if self.reduce2 is not None:
            a = self.reduce2(a)

        # the original model would execute a transformer block here

        a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens

        size = int(math.sqrt(a.shape[2]))

        a = a.view(bs, a.shape[1], size, size)
        a = self.trans_conv(a)

        if return_features:
            return a, visual_q, cond, activations
        else:
            return a,


class CLIPSegMultiLabel(nn.Module):

    def __init__(self, model) -> None:
        super().__init__()

        from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC

        self.pascal_classes = VOC

        from clip.clipseg import CLIPDensePredT
        from general_utils import load_model
        # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
        self.clipseg = load_model(model, strict=False)
        
        self.clipseg.eval()

    def forward(self, x):

        bs = x.shape[0]
        out = torch.ones(21, bs, 352, 352).to(x.device) * -10

        for class_id, class_name in enumerate(self.pascal_classes):
        
            fac = 3 if class_name == 'background' else 1

            with torch.no_grad():
                pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac

            out[class_id] += pred


        out = out.permute(1, 0, 2, 3)

        return out

        # construct output tensor