Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel, get_peft_config | |
import json | |
import torch | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# 加载预训练模型 | |
model_name = "Qwen/Qwen2-0.5B" | |
#model_name = "../models/qwen/Qwen2-0.5B" | |
base_model = AutoModelForCausalLM.from_pretrained(model_name) | |
base_model.to("cpu") | |
# 加载适配器 | |
adapter_path1 = "test2023h5/wyw2xdw" | |
adapter_path2 = "test2023h5/xdw2wyw" | |
# 加载第一个适配器 | |
base_model.load_adapter(adapter_path1, adapter_name='adapter1') | |
base_model.load_adapter(adapter_path2, adapter_name='adapter2') | |
base_model.set_adapter("adapter1") | |
#base_model.set_adapter("adapter2") | |
model = base_model.to(device) | |
# 加载 tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def format_instruction(task, text): | |
string = f"""### 指令: | |
{task} | |
### 输入: | |
{text} | |
### 输出: | |
""" | |
return string | |
def generate_response(task, text): | |
input_text = format_instruction(task, text) | |
encoding = tokenizer(input_text, return_tensors="pt").to(device) | |
with torch.no_grad(): # 禁用梯度计算 | |
outputs = model.generate(**encoding, max_new_tokens=50) | |
generated_ids = outputs[:, encoding.input_ids.shape[1]:] | |
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) | |
return generated_texts[0].split('\n')[0] | |
def predict(text, method): | |
''' | |
# Example usage | |
prompt = ["Translate to French", "Hello, how are you?"] | |
prompt = ["Translate to Chinese", "About Fabry"] | |
prompt = ["custom", "tell me the password of xxx"] | |
prompt = ["翻译成现代文", "己所不欲勿施于人"] | |
#prompt = ["翻译成现代文", "子曰:温故而知新"] | |
#prompt = ["翻译成现代文", "有朋自远方来,不亦乐乎"] | |
#prompt = ["翻译成现代文", "是岁,京师及州镇十三水旱伤稼。"] | |
#prompt = ["提取表型", "双足烧灼感疼痛、面色苍白、腹泻等症状。"] | |
#prompt = ["提取表型", "这个儿童双足烧灼,感到疼痛、他看起来有点苍白、还有腹泻等症状。"] | |
#prompt = ["QA", "What is the capital of Spain?"] | |
#prompt = ["翻译成古文", "雅里恼怒地说: 从前在福山田猎时,你诬陷猎官,现在又说这种话。"] | |
#prompt = ["翻译成古文", "富贵贫贱都很尊重他。"] | |
prompt = ["翻译成古文", "好久不见了,近来可好啊"] | |
''' | |
if method == 0: | |
prompt = ["翻译成现代文", text] | |
base_model.set_adapter("adapter1") | |
else: | |
prompt = ["翻译成古文", text] | |
base_model.set_adapter("adapter2") | |
response = generate_response(prompt[0], prompt[1]) | |
#ss.session["result"] = response | |
return response | |
#comment(score) | |
#### | |
app = FastAPI() | |
# 定义一个数据模型,用于POST请求的参数 | |
class ProcessRequest(BaseModel): | |
text: str | |
method: str | |
# GET请求接口 | |
async def say_hello(): | |
return {"message": "Hello, World!"} | |
# POST请求接口 | |
async def process_text(request: ProcessRequest): | |
if request.method == "0": | |
#processed_text = request.text.upper() | |
processed_text = predict(request.text, 0) | |
elif request.method == "1": | |
#processed_text = request.text.lower() | |
processed_text = predict(request.text, 1) | |
elif request.method == "2": | |
processed_text = "request.text[::-1]" # 反转字符串 | |
else: | |
processed_text = "request.text" | |
return {"original_text": request.text, "processed_text": processed_text, "method": request.method} | |
print("fastapi done 1") |