Spaces:
Running
Running
made streamlit ui for base search ui
Browse files- pyproject.toml +1 -0
- requirements.txt +2 -1
- src/app.py +51 -0
pyproject.toml
CHANGED
@@ -14,6 +14,7 @@ dependencies = [
|
|
14 |
"pyarrow>=18.1.0",
|
15 |
"sentence-transformers>=3.3.1",
|
16 |
"sentencepiece>=0.2.0",
|
|
|
17 |
"torch>=2.5.1",
|
18 |
"tqdm>=4.67.1",
|
19 |
"unidic-lite>=1.0.8",
|
|
|
14 |
"pyarrow>=18.1.0",
|
15 |
"sentence-transformers>=3.3.1",
|
16 |
"sentencepiece>=0.2.0",
|
17 |
+
"streamlit>=1.41.1",
|
18 |
"torch>=2.5.1",
|
19 |
"tqdm>=4.67.1",
|
20 |
"unidic-lite>=1.0.8",
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ pandas
|
|
9 |
numpy
|
10 |
polars
|
11 |
pyarrow
|
12 |
-
duckdb
|
|
|
|
9 |
numpy
|
10 |
polars
|
11 |
pyarrow
|
12 |
+
duckdb
|
13 |
+
streamlit
|
src/app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import duckdb
|
3 |
+
from embedding import get_embeddings
|
4 |
+
from config import DUCKDB_FILE
|
5 |
+
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def get_conn():
|
9 |
+
return duckdb.connect(DUCKDB_FILE)
|
10 |
+
|
11 |
+
|
12 |
+
query = """WITH ordered_embeddings AS (
|
13 |
+
SELECT embeddings.id, embeddings.part FROM embeddings
|
14 |
+
ORDER BY array_distance(embedding, ?::FLOAT[1024])
|
15 |
+
LIMIT 10
|
16 |
+
)
|
17 |
+
SELECT
|
18 |
+
p.title,
|
19 |
+
p.date,
|
20 |
+
e.start,
|
21 |
+
e.text
|
22 |
+
FROM
|
23 |
+
ordered_embeddings oe
|
24 |
+
JOIN
|
25 |
+
episodes e
|
26 |
+
ON
|
27 |
+
oe.id = e.id AND oe.part = e.part
|
28 |
+
JOIN
|
29 |
+
podcasts p
|
30 |
+
ON
|
31 |
+
oe.id = p.id;
|
32 |
+
"""
|
33 |
+
|
34 |
+
st.title("terapyon cannel search")
|
35 |
+
|
36 |
+
word = st.text_input("Search word")
|
37 |
+
if word:
|
38 |
+
st.write(f"Search word: {word}")
|
39 |
+
embeddings = get_embeddings([word], query=True)
|
40 |
+
word_embedding = embeddings[0, :]
|
41 |
+
|
42 |
+
conn = get_conn()
|
43 |
+
result = conn.execute(query, (word_embedding,)).df()
|
44 |
+
selected = st.dataframe(result,
|
45 |
+
on_select="rerun",
|
46 |
+
selection_mode="single-row")
|
47 |
+
if selected:
|
48 |
+
rows = selected["selection"].get("rows")
|
49 |
+
if rows:
|
50 |
+
row = rows[0]
|
51 |
+
st.text(result.iloc[row, 3])
|