Spaces:
Runtime error
Runtime error
File size: 17,533 Bytes
9350b9e 61125c4 fe4aa59 8d4a66f 9350b9e 143dcaa 494a5d6 143dcaa 494a5d6 4960b4c 61125c4 9350b9e fb1b9df 9350b9e 61125c4 3cf0afe 61125c4 3cf0afe 61125c4 8d4a66f fb1b9df 8d4a66f 61125c4 824918d 61125c4 824918d 61125c4 3cf0afe 61125c4 09d430e 61125c4 8d4a66f 09d430e 61125c4 3cf0afe 8d4a66f 824918d 3cf0afe 61125c4 3cf0afe 61125c4 9350b9e 61125c4 9350b9e 61125c4 9350b9e 61125c4 9350b9e fb1b9df 824918d fb1b9df 824918d fb1b9df 824918d fb1b9df 9350b9e 494a5d6 9350b9e c25263f 9350b9e 3ccb3f3 c25263f 76d28c5 c25263f 61125c4 9350b9e 61125c4 fe4aa59 61125c4 3cf0afe 61125c4 cfd5572 61125c4 54a31a9 fe4aa59 61125c4 494a5d6 fe4aa59 61125c4 fe4aa59 3cf0afe 61125c4 8d4a66f 61125c4 fe4aa59 3cf0afe fe4aa59 61125c4 fe4aa59 61125c4 3cf0afe 61125c4 fe4aa59 61125c4 9350b9e 3cf0afe 824918d 3cf0afe 6b96986 61125c4 9350b9e 61125c4 3cf0afe 384ec75 3cf0afe 6b96986 3cf0afe 6b96986 9350b9e 3cf0afe 9350b9e 61125c4 9350b9e 3cf0afe 9350b9e fb1b9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import openai
import gradio as gr
from PyPDF2 import PdfReader
from azure.storage.blob import BlobServiceClient
import io
from PyPDF2 import PdfReader
import json
import os
import sendgrid
from sendgrid.helpers.mail import Mail, Attachment, FileContent, FileName, FileType, Disposition
import base64
from azure.cosmos import CosmosClient, exceptions
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = "https://tensora-oai-france.openai.azure.com/"
openai.api_type = "azure"
openai.api_version = "2023-12-01-preview"
os_connection_string = os.getenv("CONNECTION")
os_mail_password = os.getenv("MAIL_PASSWORD")
with open("sys_prompt.txt") as f:
sys_prompt = f.read()
with open("sys_prompt_pre_questions.txt") as fg:
sys_prompt_pre_generated = fg.read()
get_window_url_params = """
function(job, resume, job_params) {
console.log(job, job_params);
const params = new URLSearchParams(window.location.search);
job_params = Object.fromEntries(params);
return [job, resume, job_params];
}
"""
def get_job_data_from_db(job_id, can_id):
try:
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("JobData")
query = f"""
SELECT TOP 1 *
FROM c
WHERE c.id = '{job_id}'
"""
job_data = list(container.query_items(query=query, enable_cross_partition_query=True))[0]
if "pre_generated" in job_data:
return job_data["title"], job_data["evaluation_email"], job_data["question_one"],job_data["question_two"],job_data["question_three"], can_id, job_data["pre_generated"], job_data["custom_questions"]
return job_data["title"], job_data["evaluation_email"], job_data["question_one"],job_data["question_two"],job_data["question_three"], can_id
except Exception as e:
print(f"Fehler beim laden der Job Daten: {str(e)}")
return None, None
def write_job_and_candidate_db_data(can_id, ai_summary):
try:
job_id = can_id.split("cv")[0][:-1]
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Items")
job_container = database.get_container_client("JobData")
candidate_item = container.read_item(item=can_id, partition_key="wg-candidate-data-v1")
candidate_item["interview_conducted"] = True
candidate_item["ai_summary"] = ai_summary
container.replace_item(item=candidate_item,body=candidate_item)
candidate_query = f"""
SELECT *
FROM c
WHERE c.job_description_id = '{candidate_item["job_description_id"]}' AND c.interview_conducted = false
"""
query_result = list(container.query_items(query=candidate_query, enable_cross_partition_query=True))
print("Succesfully updated the candidate item")
if(len(query_result)<1):
query = f"""
SELECT TOP 1 *
FROM c
WHERE c.id = '{job_id}'x
"""
job_item = list(job_container.query_items(query=query, enable_cross_partition_query=True))[0]
job_item["every_interview_conducted"] = True
job_container.replace_item(item=job_item,body=job_item)
print("Succesfully updated the job item")
except Exception as e:
print(f"Fehler beim aktualisieren der Daten: {str(e)}")
def download_and_parse_json_blob(storage_connection_string, container_name, blob_name, encoding='utf-8'):
try:
# Verbindung zum Blob-Dienst herstellen
blob_service_client = BlobServiceClient.from_connection_string(storage_connection_string)
# Container und Blob-Client erstellen
container_client = blob_service_client.get_container_client(container_name)
blob_client = container_client.get_blob_client(blob_name)
# Blob herunterladen
blob_data = blob_client.download_blob()
blob_bytes = blob_data.readall()
# JSON-Bytes in einen Python-Datenobjekt umwandeln
json_text = blob_bytes.decode(encoding)
json_data = json.loads(json_text)
# Parameter "title" und "email" aus dem JSON-Datenobjekt extrahieren und zurückgeben
title = json_data.get("title", "")
email = json_data.get("email", "")
question_one = json_data.get("question_one", "")
question_two = json_data.get("question_two", "")
question_three = json_data.get("question_three", "")
return title, email, question_one, question_two, question_three
except Exception as e:
print(f"Fehler beim Herunterladen und Verarbeiten der JSON-Datei: {str(e)}")
return None, None
def download_pdf_blob_as_text(storage_connection_string, container_name, blob_name):
try:
# Verbindung zum Blob-Dienst herstellen
blob_service_client = BlobServiceClient.from_connection_string(storage_connection_string)
# Container und Blob-Client erstellen
container_client = blob_service_client.get_container_client(container_name)
blob_client = container_client.get_blob_client(blob_name)
# Blob herunterladen und als Binärdaten speichern
blob_data = blob_client.download_blob()
pdf_bytes = blob_data.readall()
# PDF-Text extrahieren
pdf_text = ""
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
pdf_text += page.extract_text()
return pdf_text
except Exception as e:
print(f"Fehler beim Herunterladen und Konvertieren der Datei: {str(e)}")
return None
def load_job_data(job, resume, job_params):
if not job:
print("JOB_PDF: "+job_params["job"].split("cv")[0][:-1]+".pdf")
print("Resume: "+job_params["job"]+".pdf")
try:
job_id = job_params["job"].split("cv")[0][:-1]
pdf_filename_jobdescription = job_params["job"].split("cv")[0][:-1]+".pdf"
pdf_filename_cv = job_params["job"]+".pdf"
json_filename = job_params["job"].split("cv")[0][:-1]+"_jsondata.json"
storage_connection_string = os_connection_string
container_name = "jobdescriptions" # Der Name des Blob-Containers
job = download_pdf_blob_as_text(storage_connection_string, container_name, pdf_filename_jobdescription)
resume = download_pdf_blob_as_text(storage_connection_string, container_name, pdf_filename_cv)
try:
job_params = get_job_data_from_db(job_id,job_params["job"])
except:
job_params = download_and_parse_json_blob(storage_connection_string,container_name,json_filename)
print(job_params)
return job, resume, job_params, gr.Label.update("Evaluation for the job: "+job_params[0])
except:
gr.Error("An error occurred, the job description could not be loaded. Please contact the recruiter.")
return job, resume, job_params, gr.Label.update("An error occurred and the job description could not be loaded. Please contact the recruiter.", color="red")
# print(job)
# print(job_params)
def add_file(file, chat, job, resume):
if file.name.endswith(".pdf"):
doc = PdfReader(file.name)
text = ""
for page in doc.pages:
text += page.extract_text()
else:
with open(file.name) as f:
text = f.read()
if job:
print("im cv")
chat += [["📄 " + file.name.split("/")[-1], None]]
resume = text
# else:
# print("im job")
# chat += [["📄 " + file.name.split("/")[-1], "Thanks. Please upload the resume."]]
# job = text
return chat, job, resume
def user(message, history):
return "", history + [[message, None]]
def bot(history, job, resume, job_params):
if not resume or not job:
yield history
return
extension_text = ""
if len(job_params[2])>0 or len(job_params[3])>0 or len(job_params[4])>0:
print("ich habe eine extra Frage")
questions_combined = ""
if len(job_params[2])>0:
questions_combined += "-"+job_params[2]+"\n"
if len(job_params[3])>0:
questions_combined += "-"+job_params[3]+"\n"
if len(job_params[4])>0:
questions_combined += "-"+job_params[4]+"\n"
extension_text = "The recruiter has predefined the following question(s): \n\n" + questions_combined + "\nPlease ask these questions one after the other first and only then generate your own questions so that you get a total of 10 questions together with the predefined ones."
if len(job_params)>7:
print("in der neuen Struktur")
if job_params[6]:
print("mit pre fragen")
final_question_string = "\n".join(job_params[7])
system = sys_prompt_pre_generated.format(job=job, resume=resume,questions=final_question_string)
else:
print("neue struktur keine Fragen")
system = sys_prompt.format(job=job, resume=resume, n=10, extension=extension_text)
else:
print("alte Struktur")
system = sys_prompt.format(job=job, resume=resume, n=10, extension=extension_text)
messages = [{"role": "system", "content": system}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
response = openai.ChatCompletion.create(
engine="gpt-4-1106",
messages=messages,
temperature=0.0,
#stream=True,
)
print(response["choices"][0]["message"]["content"])
history[-1][1] = response["choices"][0]["message"]["content"]
yield history
#for chunk in response:
# print(chunk)
# if len(chunk["choices"][0]["delta"]) != 0 and hasattr(chunk["choices"][0]["delta"], "content"):
# history[-1][1] = history[-1][1] + chunk["choices"][0]["delta"]["content"]
# yield history
if history[-1][1] == "Thank you for conducting the evaluation! We will get back to you shortly.":
print("finished")
send_evaluation(history, job, resume, job_params)
return
def send_evaluation(history, job, resume, job_params):
# Chatverlauf in einen Textstring umwandeln
chat_text = ""
for entry in history:
if entry[0]:
chat_text += "Applicant: " + entry[0] + "\n"
if entry[1]:
chat_text += "Chatbot: " + entry[1] + "\n"
# Einstellungen für SendGrid
sg = sendgrid.SendGridAPIClient(api_key=os.environ.get('SENDGRID_API'))
# Sender- und Empfänger-E-Mail-Adressen
sender_email = "[email protected]"
receiver_email = job_params[1]
print(receiver_email)
ai_summary = "TEST Summary"
prompt = "You are a professional recruiter who has been given a CV and a job description and has created questions based on that. The eventual applicant has entered his answers to the questions. Now you have to evaluate on the basis of the answers if the applicant fits the job in principle. This is the case when about 70 percent of all questions have been answered satisfactorily and positively. Keep in mind that an answer must always be fact-based, so if, for example, the question asks for examples, the potential applicant must also give such examples. Please also provide details of which questions were answered positively and why."
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: "+job+"; Resume: "+resume},
{"role": "system", "content": "Chathistory: "+chat_text},
],
)
ai_summary = res.choices[0]["message"]["content"]
# E-Mail-Nachricht erstellen
subject = "Evaluation for the job: "+job_params[0]
message = f"""Dear Recruiter,
Please find attached the complete chat history for this evaluation, resume and summary.
The evaluation AI-supported summarized:
{ai_summary}
Sincerely,
Your Evaluation Tool
"""
if(len(job_params)>5):
write_job_and_candidate_db_data(job_params[5],ai_summary)
# Chatverlauf in eine Textdatei schreiben
chat_file_path = "chat_history.txt"
with open(chat_file_path, 'w', encoding='utf-8') as chat_file:
chat_file.write(chat_text)
# Resume-Bytes in eine TXT-Datei schreiben und als Anhang hinzufügen
resume_file_path = "resume.txt"
with open(resume_file_path, 'wb') as resume_file:
resume_file.write(resume.encode('utf-8'))
# Summary in eine TXT Datei schreiben
summary_file_path = "summary.txt"
with open(summary_file_path, 'wb') as summary_file:
summary_file.write(ai_summary.encode('utf-8'))
# SendGrid-E-Mail erstellen
message = Mail(
from_email=sender_email,
to_emails=receiver_email,
subject=subject,
plain_text_content=message,
)
# Chatverlauf als Anhang hinzufügen
with open(chat_file_path, 'rb') as chat_file:
encode_file_chat = base64.b64encode(chat_file.read()).decode()
chat_attachment = Attachment()
chat_attachment.file_content = FileContent(encode_file_chat)
chat_attachment.file_name = FileName('chat_history.txt')
chat_attachment.file_type = FileType('text/plain')
chat_attachment.disposition = Disposition('attachment')
message.attachment = chat_attachment
# Resume als Anhang hinzufügen
with open(resume_file_path, 'rb') as resume_file:
encode_file_resume = base64.b64encode(resume_file.read()).decode()
resume_attachment = Attachment()
resume_attachment.file_content = FileContent(encode_file_resume)
resume_attachment.file_name = FileName('resume.txt')
resume_attachment.file_type = FileType('text/plain')
resume_attachment.disposition = Disposition('attachment')
message.attachment = resume_attachment
# Resume als Anhang hinzufügen
with open(summary_file_path, 'rb') as summary_file:
encode_file_summary = base64.b64encode(summary_file.read()).decode()
summary_attachment = Attachment()
summary_attachment.file_content = FileContent(encode_file_summary)
summary_attachment.file_name = FileName('ai_summary.txt')
summary_attachment.file_type = FileType('text/plain')
summary_attachment.disposition = Disposition('attachment')
message.attachment = summary_attachment
try:
response = sg.send(message)
print("E-Mail wurde erfolgreich gesendet. Statuscode:", response.status_code)
except Exception as e:
print("Fehler beim Senden der E-Mail:", str(e))
def handle_start_click(welcome_label, start):
return gr.Label.update("", visible=False), gr.Button.update("Interview started", scale=0,interactive=False)
css = "footer {visibility: hidden} #component-0{height: 90vh !important} #chatbot{height: 85vh !important} #welcome_label {text-align: center!important}"
with gr.Blocks(css=css) as app:
job_params = gr.JSON({}, visible=False, label="URL Params")
job = gr.State("")
resume = gr.State("")
gr.Markdown(
f"<div style='display: flex; justify-content: space-between;align-items: center;margin-bottom: 1rem' ><h1>CV Evaluation</h1><img width='150' src='https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg' alt='WorkGeniusLogo' /></div>"
)
job_title_label = gr.Label("An error occurred and the job description could not be loaded. Please contact the recruiter.", show_label=False)
welcome_label = gr.Label("Welcome to the interview chatbot from WorkGenius. After you click the 'Start Interview' button, you will be asked a few questions to discuss whether you are a good fit for the position. This process will take approximately 10-15 minutes. Please answer the questions honestly and thoroughly. Good luck!", show_label=False, elem_id="welcome_label")
app.load(load_job_data,[job,resume, job_params], [job,resume, job_params, job_title_label], _js=get_window_url_params)
chat = gr.Chatbot(
[[None, None]], height=600, elem_id="chatbot"
)
with gr.Row():
clr = gr.Button("Clear", scale=0)
msg = gr.Textbox(lines=1, show_label=False, scale=1)
start = gr.Button("Start interview", scale=0)
# file = gr.UploadButton("Browse", file_types=[".pdf", ".txt"], scale=0)
msg.submit(user, [msg, chat], [msg, chat], queue=False).then(
bot, [chat, job, resume, job_params], chat
)
# file.upload(
# add_file, [file, chat, job, resume], [chat, job, resume], queue=False
# ).then(bot, [chat, job, resume, job_params], chat)
#().then
start.click(handle_start_click,[welcome_label, start],[welcome_label, start]).then(bot, [chat, job, resume, job_params], chat)
clr.click(lambda: None, None, chat, queue=False)
app.queue()
app.launch() |