File size: 25,190 Bytes
ff01b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import json

import pandas as pd
import requests

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests import status_codes

from pytrends import exceptions

from urllib.parse import quote


BASE_TRENDS_URL = 'https://trends.google.com/trends'


class TrendReq(object):
    """
    Google Trends API
    """
    GET_METHOD = 'get'
    POST_METHOD = 'post'
    GENERAL_URL = f'{BASE_TRENDS_URL}/api/explore'
    INTEREST_OVER_TIME_URL = f'{BASE_TRENDS_URL}/api/widgetdata/multiline'
    MULTIRANGE_INTEREST_OVER_TIME_URL = f'{BASE_TRENDS_URL}/api/widgetdata/multirange'
    INTEREST_BY_REGION_URL = f'{BASE_TRENDS_URL}/api/widgetdata/comparedgeo'
    RELATED_QUERIES_URL = f'{BASE_TRENDS_URL}/api/widgetdata/relatedsearches'
    TRENDING_SEARCHES_URL = f'{BASE_TRENDS_URL}/hottrends/visualize/internal/data'
    TOP_CHARTS_URL = f'{BASE_TRENDS_URL}/api/topcharts'
    SUGGESTIONS_URL = f'{BASE_TRENDS_URL}/api/autocomplete/'
    CATEGORIES_URL = f'{BASE_TRENDS_URL}/api/explore/pickers/category'
    TODAY_SEARCHES_URL = f'{BASE_TRENDS_URL}/api/dailytrends'
    REALTIME_TRENDING_SEARCHES_URL = f'{BASE_TRENDS_URL}/api/realtimetrends'
    TRENDS_URL = f'{BASE_TRENDS_URL}/api/trends'
    ERROR_CODES = (500, 502, 504, 429)

    def __init__(self, hl='en-US', tz=360, geo='', timeout=(2, 5), proxies='',
                 retries=0, backoff_factor=0, requests_args=None):
        """
        Initialize default values for params
        """
        # google rate limit
        self.google_rl = 'You have reached your quota limit. Please try again later.'
        self.results = None
        # set user defined options used globally
        self.tz = tz
        self.hl = hl
        self.geo = geo
        self.kw_list = list()
        self.timeout = timeout
        self.proxies = proxies  # add a proxy option
        self.retries = retries
        self.backoff_factor = backoff_factor
        self.proxy_index = 0
        self.requests_args = requests_args or {}
        self.cookies = self.GetGoogleCookie()
        # intialize widget payloads
        self.token_payload = dict()
        self.interest_over_time_widget = dict()
        self.interest_by_region_widget = dict()
        self.related_topics_widget_list = list()
        self.related_queries_widget_list = list()

        self.headers = {'accept-language': self.hl}
        self.headers.update(self.requests_args.pop('headers', {}))
        
    def GetGoogleCookie(self):
        """
        Gets google cookie (used for each and every proxy; once on init otherwise)
        Removes proxy from the list on proxy error
        """
        while True:
            if "proxies" in self.requests_args:
                try:
                    return dict(filter(lambda i: i[0] == 'NID', requests.get(
                        f'{BASE_TRENDS_URL}/explore/?geo={self.hl[-2:]}',
                        timeout=self.timeout,
                        **self.requests_args
                    ).cookies.items()))
                except:
                    continue
            else:
                if len(self.proxies) > 0:
                    proxy = {'https': self.proxies[self.proxy_index]}
                else:
                    proxy = ''
                try:
                    return dict(filter(lambda i: i[0] == 'NID', requests.get(
                        f'{BASE_TRENDS_URL}/explore/?geo={self.hl[-2:]}',
                        timeout=self.timeout,
                        proxies=proxy,
                        **self.requests_args
                    ).cookies.items()))
                except requests.exceptions.ProxyError:
                    print('Proxy error. Changing IP')
                    if len(self.proxies) > 1:
                        self.proxies.remove(self.proxies[self.proxy_index])
                    else:
                        print('No more proxies available. Bye!')
                        raise
                    continue

    def GetNewProxy(self):
        """
        Increment proxy INDEX; zero on overflow
        """
        if self.proxy_index < (len(self.proxies) - 1):
            self.proxy_index += 1
        else:
            self.proxy_index = 0

    def _get_data(self, url, method=GET_METHOD, trim_chars=0, **kwargs):
        """Send a request to Google and return the JSON response as a Python object
        :param url: the url to which the request will be sent
        :param method: the HTTP method ('get' or 'post')
        :param trim_chars: how many characters should be trimmed off the beginning of the content of the response
            before this is passed to the JSON parser
        :param kwargs: any extra key arguments passed to the request builder (usually query parameters or data)
        :return:
        """
        s = requests.session()
        # Retries mechanism. Activated when one of statements >0 (best used for proxy)
        if self.retries > 0 or self.backoff_factor > 0:
            retry = Retry(total=self.retries, read=self.retries,
                          connect=self.retries,
                          backoff_factor=self.backoff_factor,
                          status_forcelist=TrendReq.ERROR_CODES,
                          method_whitelist=frozenset(['GET', 'POST']))
            s.mount('https://', HTTPAdapter(max_retries=retry))

        s.headers.update(self.headers)
        if len(self.proxies) > 0:
            self.cookies = self.GetGoogleCookie()
            s.proxies.update({'https': self.proxies[self.proxy_index]})
        if method == TrendReq.POST_METHOD:
            response = s.post(url, timeout=self.timeout,
                              cookies=self.cookies, **kwargs,
                              **self.requests_args)  # DO NOT USE retries or backoff_factor here
        else:
            response = s.get(url, timeout=self.timeout, cookies=self.cookies,
                             **kwargs, **self.requests_args)  # DO NOT USE retries or backoff_factor here
        # check if the response contains json and throw an exception otherwise
        # Google mostly sends 'application/json' in the Content-Type header,
        # but occasionally it sends 'application/javascript
        # and sometimes even 'text/javascript
        if response.status_code == 200 and 'application/json' in \
                response.headers['Content-Type'] or \
                'application/javascript' in response.headers['Content-Type'] or \
                'text/javascript' in response.headers['Content-Type']:
            # trim initial characters
            # some responses start with garbage characters, like ")]}',"
            # these have to be cleaned before being passed to the json parser
            content = response.text[trim_chars:]
            # parse json
            self.GetNewProxy()
            return json.loads(content)
        else:
            if response.status_code == status_codes.codes.too_many_requests:
                raise exceptions.TooManyRequestsError.from_response(response)
            raise exceptions.ResponseError.from_response(response)

    def build_payload(self, kw_list, cat=0, timeframe='today 5-y', geo='',
                      gprop=''):
        """Create the payload for related queries, interest over time and interest by region"""
        if gprop not in ['', 'images', 'news', 'youtube', 'froogle']:
            raise ValueError('gprop must be empty (to indicate web), images, news, youtube, or froogle')
        self.kw_list = kw_list
        self.geo = geo or self.geo
        self.token_payload = {
            'hl': self.hl,
            'tz': self.tz,
            'req': {'comparisonItem': [], 'category': cat, 'property': gprop}
        }

        # Check if timeframe is a list
        if isinstance(timeframe, list):
            for index, kw in enumerate(self.kw_list):
                keyword_payload = {'keyword': kw, 'time': timeframe[index], 'geo': self.geo}
                self.token_payload['req']['comparisonItem'].append(keyword_payload)
        else: 
            # build out json for each keyword with
            for kw in self.kw_list:
                keyword_payload = {'keyword': kw, 'time': timeframe, 'geo': self.geo}
                self.token_payload['req']['comparisonItem'].append(keyword_payload)

        # requests will mangle this if it is not a string
        self.token_payload['req'] = json.dumps(self.token_payload['req'])
        # get tokens
        self._tokens()
        return

    def _tokens(self):
        """Makes request to Google to get API tokens for interest over time, interest by region and related queries"""
        # make the request and parse the returned json
        widget_dicts = self._get_data(
            url=TrendReq.GENERAL_URL,
            method=TrendReq.POST_METHOD,
            params=self.token_payload,
            trim_chars=4,
        )['widgets']
        # order of the json matters...
        first_region_token = True
        # clear self.related_queries_widget_list and self.related_topics_widget_list
        # of old keywords'widgets
        self.related_queries_widget_list[:] = []
        self.related_topics_widget_list[:] = []
        # assign requests
        for widget in widget_dicts:
            if widget['id'] == 'TIMESERIES':
                self.interest_over_time_widget = widget
            if widget['id'] == 'GEO_MAP' and first_region_token:
                self.interest_by_region_widget = widget
                first_region_token = False
            # response for each term, put into a list
            if 'RELATED_TOPICS' in widget['id']:
                self.related_topics_widget_list.append(widget)
            if 'RELATED_QUERIES' in widget['id']:
                self.related_queries_widget_list.append(widget)
        return

    def interest_over_time(self):
        """Request data from Google's Interest Over Time section and return a dataframe"""

        over_time_payload = {
            # convert to string as requests will mangle
            'req': json.dumps(self.interest_over_time_widget['request']),
            'token': self.interest_over_time_widget['token'],
            'tz': self.tz
        }

        # make the request and parse the returned json
        req_json = self._get_data(
            url=TrendReq.INTEREST_OVER_TIME_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=over_time_payload,
        )

        df = pd.DataFrame(req_json['default']['timelineData'])
        if (df.empty):
            return df

        df['date'] = pd.to_datetime(df['time'].astype(dtype='float64'),
                                    unit='s')
        df = df.set_index(['date']).sort_index()
        # split list columns into seperate ones, remove brackets and split on comma
        result_df = df['value'].apply(lambda x: pd.Series(
            str(x).replace('[', '').replace(']', '').split(',')))
        # rename each column with its search term, relying on order that google provides...
        for idx, kw in enumerate(self.kw_list):
            # there is currently a bug with assigning columns that may be
            # parsed as a date in pandas: use explicit insert column method
            result_df.insert(len(result_df.columns), kw,
                             result_df[idx].astype('int'))
            del result_df[idx]

        if 'isPartial' in df:
            # make other dataframe from isPartial key data
            # split list columns into seperate ones, remove brackets and split on comma
            df = df.fillna(False)
            result_df2 = df['isPartial'].apply(lambda x: pd.Series(
                str(x).replace('[', '').replace(']', '').split(',')))
            result_df2.columns = ['isPartial']
            # Change to a bool type.
            result_df2.isPartial = result_df2.isPartial == 'True'
            # concatenate the two dataframes
            final = pd.concat([result_df, result_df2], axis=1)
        else:
            final = result_df
            final['isPartial'] = False

        return final

    def multirange_interest_over_time(self):
        """Request data from Google's Interest Over Time section across different time ranges and return a dataframe"""

        over_time_payload = {
            # convert to string as requests will mangle
            'req': json.dumps(self.interest_over_time_widget['request']),
            'token': self.interest_over_time_widget['token'],
            'tz': self.tz
        }

        # make the request and parse the returned json
        req_json = self._get_data(
            url=TrendReq.MULTIRANGE_INTEREST_OVER_TIME_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=over_time_payload,
        )

        df = pd.DataFrame(req_json['default']['timelineData'])
        if (df.empty):
            return df

        result_df = pd.json_normalize(df['columnData'])

        # Split dictionary columns into seperate ones
        for i, column in enumerate(result_df.columns):
            result_df["[" + str(i) + "] " + str(self.kw_list[i]) + " date"] = result_df[i].apply(pd.Series)["formattedTime"]
            result_df["[" + str(i) + "] " + str(self.kw_list[i]) + " value"] = result_df[i].apply(pd.Series)["value"]   
            result_df = result_df.drop([i], axis=1)
        
        # Adds a row with the averages at the top of the dataframe
        avg_row = {}
        for i, avg in enumerate(req_json['default']['averages']):
            avg_row["[" + str(i) + "] " + str(self.kw_list[i]) + " date"] = "Average"
            avg_row["[" + str(i) + "] " + str(self.kw_list[i]) + " value"] = req_json['default']['averages'][i]

        result_df.loc[-1] = avg_row
        result_df.index = result_df.index + 1
        result_df = result_df.sort_index()
        
        return result_df


    def interest_by_region(self, resolution='COUNTRY', inc_low_vol=False,
                           inc_geo_code=False):
        """Request data from Google's Interest by Region section and return a dataframe"""

        # make the request
        region_payload = dict()
        if self.geo == '':
            self.interest_by_region_widget['request'][
                'resolution'] = resolution
        elif self.geo == 'US' and resolution in ['DMA', 'CITY', 'REGION']:
            self.interest_by_region_widget['request'][
                'resolution'] = resolution

        self.interest_by_region_widget['request'][
            'includeLowSearchVolumeGeos'] = inc_low_vol

        # convert to string as requests will mangle
        region_payload['req'] = json.dumps(
            self.interest_by_region_widget['request'])
        region_payload['token'] = self.interest_by_region_widget['token']
        region_payload['tz'] = self.tz

        # parse returned json
        req_json = self._get_data(
            url=TrendReq.INTEREST_BY_REGION_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=region_payload,
        )
        df = pd.DataFrame(req_json['default']['geoMapData'])
        if (df.empty):
            return df

        # rename the column with the search keyword
        geo_column = 'geoCode' if 'geoCode' in df.columns else 'coordinates'
        columns = ['geoName', geo_column, 'value']
        df = df[columns].set_index(['geoName']).sort_index()
        # split list columns into separate ones, remove brackets and split on comma
        result_df = df['value'].apply(lambda x: pd.Series(
            str(x).replace('[', '').replace(']', '').split(',')))
        if inc_geo_code:
            if geo_column in df.columns:
                result_df[geo_column] = df[geo_column]
            else:
                print('Could not find geo_code column; Skipping')

        # rename each column with its search term
        for idx, kw in enumerate(self.kw_list):
            result_df[kw] = result_df[idx].astype('int')
            del result_df[idx]

        return result_df

    def related_topics(self):
        """Request data from Google's Related Topics section and return a dictionary of dataframes

        If no top and/or rising related topics are found, the value for the key "top" and/or "rising" will be None
        """

        # make the request
        related_payload = dict()
        result_dict = dict()
        for request_json in self.related_topics_widget_list:
            # ensure we know which keyword we are looking at rather than relying on order
            try:
                kw = request_json['request']['restriction'][
                    'complexKeywordsRestriction']['keyword'][0]['value']
            except KeyError:
                kw = ''
            # convert to string as requests will mangle
            related_payload['req'] = json.dumps(request_json['request'])
            related_payload['token'] = request_json['token']
            related_payload['tz'] = self.tz

            # parse the returned json
            req_json = self._get_data(
                url=TrendReq.RELATED_QUERIES_URL,
                method=TrendReq.GET_METHOD,
                trim_chars=5,
                params=related_payload,
            )

            # top topics
            try:
                top_list = req_json['default']['rankedList'][0]['rankedKeyword']
                df_top = pd.json_normalize(top_list, sep='_')
            except KeyError:
                # in case no top topics are found, the lines above will throw a KeyError
                df_top = None

            # rising topics
            try:
                rising_list = req_json['default']['rankedList'][1]['rankedKeyword']
                df_rising = pd.json_normalize(rising_list, sep='_')
            except KeyError:
                # in case no rising topics are found, the lines above will throw a KeyError
                df_rising = None

            result_dict[kw] = {'rising': df_rising, 'top': df_top}
        return result_dict

    def related_queries(self):
        """Request data from Google's Related Queries section and return a dictionary of dataframes

        If no top and/or rising related queries are found, the value for the key "top" and/or "rising" will be None
        """

        # make the request
        related_payload = dict()
        result_dict = dict()
        for request_json in self.related_queries_widget_list:
            # ensure we know which keyword we are looking at rather than relying on order
            try:
                kw = request_json['request']['restriction'][
                    'complexKeywordsRestriction']['keyword'][0]['value']
            except KeyError:
                kw = ''
            # convert to string as requests will mangle
            related_payload['req'] = json.dumps(request_json['request'])
            related_payload['token'] = request_json['token']
            related_payload['tz'] = self.tz

            # parse the returned json
            req_json = self._get_data(
                url=TrendReq.RELATED_QUERIES_URL,
                method=TrendReq.GET_METHOD,
                trim_chars=5,
                params=related_payload,
            )

            # top queries
            try:
                top_df = pd.DataFrame(
                    req_json['default']['rankedList'][0]['rankedKeyword'])
                top_df = top_df[['query', 'value']]
            except KeyError:
                # in case no top queries are found, the lines above will throw a KeyError
                top_df = None

            # rising queries
            try:
                rising_df = pd.DataFrame(
                    req_json['default']['rankedList'][1]['rankedKeyword'])
                rising_df = rising_df[['query', 'value']]
            except KeyError:
                # in case no rising queries are found, the lines above will throw a KeyError
                rising_df = None

            result_dict[kw] = {'top': top_df, 'rising': rising_df}
        return result_dict

    def trending_searches(self, pn='united_states'):
        """Request data from Google's Hot Searches section and return a dataframe"""

        # make the request
        # forms become obsolete due to the new TRENDING_SEARCHES_URL
        # forms = {'ajax': 1, 'pn': pn, 'htd': '', 'htv': 'l'}
        req_json = self._get_data(
            url=TrendReq.TRENDING_SEARCHES_URL,
            method=TrendReq.GET_METHOD
        )[pn]
        print(req_json)
        result_df = pd.DataFrame(req_json)
        return result_df

    def today_searches(self, pn='US'):
        """Request data from Google Daily Trends section and returns a dataframe"""
        forms = {'ns': 15, 'geo': pn, 'tz': '-180', 'hl': self.hl}
        req_json = self._get_data(
            url=TrendReq.TODAY_SEARCHES_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=forms,
            **self.requests_args
        )['default']['trendingSearchesDays'][0]['trendingSearches']
        # parse the returned jso
        
        return req_json

    def realtime_trending_searches(self, pn='US', cat='all', count =300):
        """Request data from Google Realtime Search Trends section and returns a dataframe"""
        # Don't know what some of the params mean here, followed the nodejs library
        # https://github.com/pat310/google-trends-api/ 's implemenration


        #sort: api accepts only 0 as the value, optional parameter

        # ri: number of trending stories IDs returned,
        # max value of ri supported is 300, based on emperical evidence

        ri_value = 300
        if count < ri_value:
            ri_value = count

        # rs : don't know what is does but it's max value is never more than the ri_value based on emperical evidence
        # max value of ri supported is 200, based on emperical evidence
        rs_value = 200
        if count < rs_value:
            rs_value = count-1

        forms = {'ns': 15, 'geo': pn, 'tz': '300', 'hl': self.hl, 'cat': cat, 'fi' : '0', 'fs' : '0', 'ri' : ri_value, 'rs' : rs_value, 'sort' : 0}
        req_json = self._get_data(
            url=TrendReq.REALTIME_TRENDING_SEARCHES_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=forms
        )['storySummaries']['trendingStories']

        return req_json

    def top_charts(self, date, hl='en-US', tz=300, geo='GLOBAL'):
        """Request data from Google's Top Charts section and return a dataframe"""

        try:
            date = int(date)
        except:
            raise ValueError(
                'The date must be a year with format YYYY. See https://github.com/GeneralMills/pytrends/issues/355')

        # create the payload
        chart_payload = {'hl': hl, 'tz': tz, 'date': date, 'geo': geo,
                         'isMobile': False}

        # make the request and parse the returned json
        req_json = self._get_data(
            url=TrendReq.TOP_CHARTS_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=chart_payload
        )
        try:
            df = pd.DataFrame(req_json['topCharts'][0]['listItems'])
        except IndexError:
            df = None
        return df
    
    def trends(self, date, hl='en-US', tz=300, geo='GLOBAL'):
        """Request data from Google's Top Charts section and return a dataframe"""

        # create the payload
        chart_payload = {'hl': hl, 'tz': tz, 'date': date, 'geo': geo,
                            'isMobile': False}

        # make the request and parse the returned json
        req_json = self._get_data(
            url=TrendReq.GENERAL_URL,
            method=TrendReq.GET_METHOD,
            trim_chars=5,
            params=chart_payload
        )
        try:
            df = pd.DataFrame(req_json['topCharts'][0]['listItems'])
        except IndexError:
            df = None
        return df

    def suggestions(self, keyword):
        """Request data from Google's Keyword Suggestion dropdown and return a dictionary"""

        # make the request
        kw_param = quote(keyword)
        parameters = {'hl': self.hl}

        req_json = self._get_data(
            url=TrendReq.SUGGESTIONS_URL + kw_param,
            params=parameters,
            method=TrendReq.GET_METHOD,
            trim_chars=5
        )['default']['topics']
        return req_json

    def categories(self):
        """Request available categories data from Google's API and return a dictionary"""

        params = {'hl': self.hl}

        req_json = self._get_data(
            url=TrendReq.CATEGORIES_URL,
            params=params,
            method=TrendReq.GET_METHOD,
            trim_chars=5
        )
        return req_json

    def get_historical_interest(self, *args, **kwargs):
        raise NotImplementedError(
            """This method has been removed for incorrectness. It will be removed completely in v5.
If you'd like similar functionality, please try implementing it yourself and consider submitting a pull request to add it to pytrends.
          
There is discussion at:
https://github.com/GeneralMills/pytrends/pull/542"""
        )