# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import math import numpy as np import torch def transform_pos(mtx, pos, keepdim=False): t_mtx = torch.from_numpy(mtx).to( pos.device) if isinstance( mtx, np.ndarray) else mtx if pos.shape[-1] == 3: posw = torch.cat( [pos, torch.ones([pos.shape[0], 1]).to(pos.device)], axis=1) else: posw = pos if keepdim: return torch.matmul(posw, t_mtx.t())[...] else: return torch.matmul(posw, t_mtx.t())[None, ...] def get_mv_matrix(elev, azim, camera_distance, center=None): elev = -elev azim += 90 elev_rad = math.radians(elev) azim_rad = math.radians(azim) camera_position = np.array([camera_distance * math.cos(elev_rad) * math.cos(azim_rad), camera_distance * math.cos(elev_rad) * math.sin(azim_rad), camera_distance * math.sin(elev_rad)]) if center is None: center = np.array([0, 0, 0]) else: center = np.array(center) lookat = center - camera_position lookat = lookat / np.linalg.norm(lookat) up = np.array([0, 0, 1.0]) right = np.cross(lookat, up) right = right / np.linalg.norm(right) up = np.cross(right, lookat) up = up / np.linalg.norm(up) c2w = np.concatenate( [np.stack([right, up, -lookat], axis=-1), camera_position[:, None]], axis=-1) w2c = np.zeros((4, 4)) w2c[:3, :3] = np.transpose(c2w[:3, :3], (1, 0)) w2c[:3, 3:] = -np.matmul(np.transpose(c2w[:3, :3], (1, 0)), c2w[:3, 3:]) w2c[3, 3] = 1.0 return w2c.astype(np.float32) def get_orthographic_projection_matrix( left=-1, right=1, bottom=-1, top=1, near=0, far=2): """ 计算正交投影矩阵。 参数: left (float): 投影区域左侧边界。 right (float): 投影区域右侧边界。 bottom (float): 投影区域底部边界。 top (float): 投影区域顶部边界。 near (float): 投影区域近裁剪面距离。 far (float): 投影区域远裁剪面距离。 返回: numpy.ndarray: 正交投影矩阵。 """ ortho_matrix = np.eye(4, dtype=np.float32) ortho_matrix[0, 0] = 2 / (right - left) ortho_matrix[1, 1] = 2 / (top - bottom) ortho_matrix[2, 2] = -2 / (far - near) ortho_matrix[0, 3] = -(right + left) / (right - left) ortho_matrix[1, 3] = -(top + bottom) / (top - bottom) ortho_matrix[2, 3] = -(far + near) / (far - near) return ortho_matrix def get_perspective_projection_matrix(fovy, aspect_wh, near, far): fovy_rad = math.radians(fovy) return np.array([[1.0 / (math.tan(fovy_rad / 2.0) * aspect_wh), 0, 0, 0], [0, 1.0 / math.tan(fovy_rad / 2.0), 0, 0], [0, 0, -(far + near) / (far - near), - 2.0 * far * near / (far - near)], [0, 0, -1, 0]]).astype(np.float32)