Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,475 Bytes
60a23f4 7435987 60a23f4 3796524 ed0e197 a926ca7 884f63d 60a23f4 a926ca7 84c52c1 60a23f4 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 2922df3 93b76f8 2922df3 29e1fe9 84c52c1 a6c0cd7 29e1fe9 84c52c1 29e1fe9 d160556 29e1fe9 84c52c1 29e1fe9 740dbad 29e1fe9 84c52c1 2922df3 29e1fe9 a6c0cd7 29e1fe9 84c52c1 29e1fe9 2922df3 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 a6c0cd7 29e1fe9 84c52c1 29e1fe9 2922df3 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 bc6337f 29e1fe9 84c52c1 29e1fe9 10e7dfd 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 95a5a8a 29e1fe9 84c52c1 29e1fe9 84c52c1 29e1fe9 6820426 84c52c1 29e1fe9 84c52c1 29e1fe9 4e312e8 29e1fe9 60a23f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# pip install gradio==4.44.1
if True:
import os
import spaces
import subprocess
import sys
import shlex
print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
print('install custom')
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
IP = "0.0.0.0"
PORT = 7860
else:
IP = "0.0.0.0"
PORT = 8080
class spaces:
class GPU:
def __init__(self, duration=60):
self.duration = duration
def __call__(self, func):
return func
import os
import shutil
import time
from glob import glob
from pathlib import Path
from PIL import Image
from datetime import datetime
import uuid
import gradio as gr
import torch
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
def start_session(req: gr.Request):
save_folder = os.path.join(SAVE_DIR, str(req.session_hash))
os.makedirs(save_folder, exist_ok=True)
def end_session(req: gr.Request):
save_folder = os.path.join(SAVE_DIR, str(req.session_hash))
shutil.rmtree(save_folder)
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/*.png'))
def get_example_txt_list():
print('Loading example txt list ...')
txt_list = list()
for line in open('./assets/example_prompts.txt'):
txt_list.append(line.strip())
return txt_list
def export_mesh(mesh, save_folder, textured=False):
if textured:
path = os.path.join(save_folder, f'textured_mesh.glb')
else:
path = os.path.join(save_folder, f'white_mesh.glb')
mesh.export(path, include_normals=textured)
return path
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'{uuid.uuid4()}_textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'{uuid.uuid4()}_white_mesh.html')
with open(os.path.join(CURRENT_DIR, template_name), 'r') as f:
template_html = f.read()
obj_html = f"""
<div class="column is-mobile is-centered">
<model-viewer style="height: {height - 10}px; width: {width}px;" rotation-per-second="10deg" id="modelViewer"
src="{related_path}/" disable-tap
environment-image="neutral" auto-rotate camera-target="0m 0m 0m" orientation="0deg 0deg 170deg" shadow-intensity=".9"
ar auto-rotate camera-controls>
</model-viewer>
</div>
"""
with open(output_html_path, 'w') as f:
f.write(template_html.replace('<model-viewer>', obj_html))
output_html_path = output_html_path.replace(SAVE_DIR + '/', '')
iframe_tag = f'<iframe src="/static/{output_html_path}" height="{height}" width="100%" frameborder="0"></iframe>'
print(f'Find html {output_html_path}, {os.path.exists(output_html_path)}')
# rel_path = os.path.relpath(output_html_path, SAVE_DIR)
# iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>'
# print(f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
<div style='height: {height}; width: 100%;'>
{iframe_tag}
</div>
"""
@spaces.GPU(duration=100)
def _gen_shape(
caption: str,
image: Image.Image,
steps: int,
guidance_scale: float,
seed: int,
octree_resolution: int,
check_box_rembg: bool,
req: gr.Request,
):
if caption: print('prompt is', caption)
save_folder = os.path.join(SAVE_DIR, str(req.session_hash))
os.makedirs(save_folder, exist_ok=True)
stats = {}
time_meta = {}
start_time_0 = time.time()
if image is None:
start_time = time.time()
try:
image = t2i_worker(caption)
except Exception as e:
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.")
time_meta['text2image'] = time.time() - start_time
image.save(os.path.join(save_folder, 'input.png'))
print(f"[{datetime.now()}][HunYuan3D-2]]", str(req.session_hash), image.mode)
if check_box_rembg or image.mode == "RGB":
start_time = time.time()
image = rmbg_worker(image.convert('RGB'))
time_meta['rembg'] = time.time() - start_time
image.save(os.path.join(save_folder, 'rembg.png'))
# image to white model
start_time = time.time()
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
mesh = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution
)[0]
mesh = FloaterRemover()(mesh)
mesh = DegenerateFaceRemover()(mesh)
mesh = FaceReducer()(mesh)
stats['number_of_faces'] = mesh.faces.shape[0]
stats['number_of_vertices'] = mesh.vertices.shape[0]
time_meta['image_to_textured_3d'] = {'total': time.time() - start_time}
time_meta['total'] = time.time() - start_time_0
stats['time'] = time_meta
torch.cuda.empty_cache()
return mesh, save_folder, image
@spaces.GPU(duration=150)
def generation_all(
caption: str,
image: Image.Image,
steps: int,
guidance_scale: float,
seed: int,
octree_resolution: int,
check_box_rembg: bool,
req: gr.Request,
):
mesh, save_folder, image = _gen_shape(
caption,
image,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
req=req
)
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700)
textured_mesh = texgen_worker(mesh, image)
path_textured = export_mesh(textured_mesh, save_folder, textured=True)
model_viewer_html_textured = build_model_viewer_html(save_folder, height=596, width=700, textured=True)
torch.cuda.empty_cache()
return (
path,
path_textured,
model_viewer_html,
model_viewer_html_textured,
)
@spaces.GPU(duration=100)
def shape_generation(
caption: str,
image: Image.Image,
steps: int,
guidance_scale: float,
seed: int,
octree_resolution: int,
check_box_rembg: bool,
req: gr.Request,
):
mesh, save_folder, image = _gen_shape(
caption,
image,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
req=req,
)
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700)
return (
path,
model_viewer_html,
)
def build_app():
title_html = """
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px">
Hunyuan3D-2: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation
</div>
<div align="center">
Tencent Hunyuan3D Team
</div>
<div align="center">
<a href="https://github.com/tencent/Hunyuan3D-2">Github Page</a>  
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>  
<a href="https://arxiv.org/abs/2501.12202">Technical Report</a>  
<a href="https://huggingface.co./Tencent/Hunyuan3D-2"> Models</a>  
</div>
"""
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', delete_cache=(1000,1000)) as demo:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs() as tabs_prompt:
with gr.Tab('Image Prompt', id='tab_img_prompt') as tab_ip:
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290)
with gr.Row():
check_box_rembg = gr.Checkbox(value=True, label='Remove Background')
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I) as tab_tp:
caption = gr.Textbox(label='Text Prompt',
placeholder='HunyuanDiT will be used to generate image.',
info='Example: A 3D model of a cute cat, white background')
with gr.Accordion('Advanced Options', open=False):
num_steps = gr.Slider(maximum=50, minimum=20, value=50, step=1, label='Inference Steps')
octree_resolution = gr.Dropdown([256, 384, 512], value=256, label='Octree Resolution')
cfg_scale = gr.Number(value=5.5, label='Guidance Scale')
seed = gr.Slider(maximum=1e7, minimum=0, value=1234, label='Seed')
with gr.Group():
btn = gr.Button(value='Generate Shape Only', variant='primary')
btn_all = gr.Button(value='Generate Shape and Texture', variant='primary', visible=HAS_TEXTUREGEN)
# with gr.Group():
# file_out = gr.File(label="File", visible=False)
# file_out2 = gr.File(label="File", visible=False)
with gr.Group():
file_out = gr.DownloadButton(label="Download White Mesh", interactive=False)
file_out2 = gr.DownloadButton(label="Download Textured Mesh", interactive=False)
with gr.Column(scale=5):
with gr.Tabs():
with gr.Tab('Generated Mesh') as mesh1:
html_output1 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Generated Textured Mesh') as mesh2:
html_output2 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Column(scale=2):
with gr.Tabs() as gallery:
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery') as tab_gi:
with gr.Row():
gr.Examples(examples=example_is, inputs=[image],
label="Image Prompts", examples_per_page=18)
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I) as tab_gt:
with gr.Row():
gr.Examples(examples=example_ts, inputs=[caption],
label="Text Prompts", examples_per_page=18)
if not HAS_TEXTUREGEN:
gr.HTML("""
<div style="margin-top: 20px;">
<b>Warning: </b>
Texture synthesis is disable due to missing requirements,
please install requirements following README.md to activate it.
</div>
""")
if not args.enable_t23d:
gr.HTML("""
<div style="margin-top: 20px;">
<b>Warning: </b>
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`.
</div>
""")
tab_gi.select(fn=lambda: gr.update(selected='tab_img_prompt'), outputs=tabs_prompt)
if HAS_T2I:
tab_gt.select(fn=lambda: gr.update(selected='tab_txt_prompt'), outputs=tabs_prompt)
btn.click(
shape_generation,
inputs=[
caption,
image,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
],
outputs=[file_out, html_output1]
).then(
lambda: gr.Button(interactive=True),
outputs=[file_out],
)
btn_all.click(
generation_all,
inputs=[
caption,
image,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
],
outputs=[file_out, file_out2, html_output1, html_output2]
).then(
lambda: (gr.Button(interactive=True),gr.Button(interactive=True)),
outputs=[file_out, file_out2],
)
# demo.load(start_session)
# demo.unload(end_session)
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
parser.add_argument('--cache-path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', default=True)
args = parser.parse_args()
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
SAVE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), args.cache_path)
os.makedirs(SAVE_DIR, exist_ok=True)
HTML_OUTPUT_PLACEHOLDER = """
<div style='height: 596px; width: 100%; border-radius: 8px; border-color: #e5e7eb; order-style: solid; border-width: 1px;'></div>
"""
INPUT_MESH_HTML = """
<div style='height: 490px; width: 100%; border-radius: 8px;
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
</div>
"""
example_is = get_example_img_list()
example_ts = get_example_txt_list()
try:
from hy3dgen.texgen import Hunyuan3DPaintPipeline
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2')
HAS_TEXTUREGEN = True
except Exception as e:
print(e)
print("Failed to load texture generator.")
print('Please try to install requirements by following README.md')
HAS_TEXTUREGEN = False
HAS_T2I = False
if args.enable_t23d:
from hy3dgen.text2image import HunyuanDiTPipeline
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled')
HAS_T2I = True
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2')
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path('./gradio_cache')
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir), name="static")
demo = build_app()
demo.queue(max_size=10)
app = gr.mount_gradio_app(app, demo, path="/")
uvicorn.run(app, host=IP, port=PORT)
|