import base64 import json from datetime import datetime import torch import spaces from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer from PIL import Image import ast import os from datetime import datetime import numpy as np from huggingface_hub import hf_hub_download, list_repo_files import gradio as gr import time # Define constants _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." MIN_PIXELS = 256 * 28 * 28 MAX_PIXELS = 1344 * 28 * 28 # Specify the model repository and destination folder model_repo = "showlab/ShowUI-2B" destination_folder = "./showui-2b" # Ensure the destination folder exists os.makedirs(destination_folder, exist_ok=True) # List all files in the repository files = list_repo_files(repo_id=model_repo) # Download each file to the destination folder for file in files: file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) print(f"Downloaded {file} to {file_path}") model = Qwen2VLForConditionalGeneration.from_pretrained( "./showui-2b", # "showlab/ShowUI-2B", torch_dtype=torch.bfloat16, device_map="cuda", ) # Load the processor processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) model_moon = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", revision="2025-01-09", trust_remote_code=True, device_map={"": "cuda"}) # Helper functions def draw_point(image_input, point=None, radius=5): """Draw a point on the image.""" if isinstance(image_input, str): image = Image.open(image_input) else: image = Image.fromarray(np.uint8(image_input)) if point: x, y = point[0] * image.width, point[1] * image.height ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill="red") return image def array_to_image_path(image_array): """Save the uploaded image and return its path.""" if image_array is None: raise ValueError("No image provided. Please upload an image before submitting.") img = Image.fromarray(np.uint8(image_array)) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{timestamp}.png" img.save(filename) return os.path.abspath(filename) def infer_moon(img, query): start = time.time() image = Image.fromarray(np.uint8(img)) points = model_moon.point(image, query)["points"] converted_data = [round(points[0]["x"], 2), round(points[0]["y"], 2)] end = time.time() total_time = end - start return converted_data, f"{round(total_time, 2)} seconds" def infer_showui(image_path, query): start = time.time() messages = [ { "role": "user", "content": [ {"type": "text", "text": _SYSTEM}, {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, {"type": "text", "text": query}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") inputs = inputs.to("cuda") # Generate output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Parse the output into coordinates click_xy = ast.literal_eval(output_text) end = time.time() total_time = end - start return click_xy, f"{round(total_time, 2)} seconds" def run(image, query): """Main function for inference.""" image_path = array_to_image_path(image) moon, time_taken_moon = infer_moon(image, query) showui, time_taken_showui = infer_showui(image_path, query) # Draw the point on the image result_image = draw_point(image_path, showui, radius=10) result_moon_image = draw_point(image_path, moon, radius=10) return result_image, time_taken_showui, result_moon_image, time_taken_moon def build_demo(): with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: # State to store the consistent image path state_image_path = gr.State(value=None) with gr.Row(): with gr.Column(scale=3): # Input components imagebox = gr.Image(type="numpy", label="Input Screenshot") textbox = gr.Textbox( show_label=True, placeholder="Enter a query (e.g., 'Click Nahant')", label="Query", ) submit_btn = gr.Button(value="Submit", variant="primary") # Placeholder examples gr.Examples( examples=[ ["./examples/app_store.png", "Download Kindle."], ["./examples/ios_setting.png", "Turn off Do not disturb."], ["./examples/image_13.png", "Tap on vehicle search."], ["./examples/map.png", "Boston."], ["./examples/wallet.png", "Scan a QR code."], ["./examples/word.png", "More shapes."], ["./examples/web_shopping.png", "Proceed to checkout."], ["./examples/web_forum.png", "Post my comment."], ["./examples/safari_google.png", "Click on search bar."], ], inputs=[imagebox, textbox], examples_per_page=3, ) with gr.Column(scale=8): # Output components output_img1 = gr.Image(type="pil", label="Show UI Output") output_time1 = gr.Text(label="showui inference time") output_img2 = gr.Image(type="pil", label="Moon dream Output") output_time2 = gr.Text(label="moondream inference time") # Add a note below the images to explain the red point gr.HTML( """
Note: The red point on the output images represents the predicted clickable coordinates.
""" ) # Buttons for voting, flagging, regenerating, and clearing with gr.Row(elem_id="action-buttons", equal_height=True): regenerate_btn = gr.Button(value="🔄 Regenerate", variant="secondary") clear_btn = gr.Button(value="🗑️ Clear", interactive=True) # Combined Clear button # Define button actions def on_submit(image, query): """Handle the submit button click.""" if image is None: raise ValueError("No image provided. Please upload an image before submitting.") # Generate consistent image path and store it in the state image_path = array_to_image_path(image) return run(image, query) + (image_path,) submit_btn.click( on_submit, [imagebox, textbox], [output_img1, output_time1, output_img2, output_time2, state_image_path], ) clear_btn.click( lambda: (None, None, None, None, None), inputs=None, outputs=[imagebox, textbox, output_img1, output_img2, state_image_path], # Clear all outputs queue=False, ) regenerate_btn.click( lambda image, query, state_image_path: run(image, query), [imagebox, textbox, state_image_path], [output_img1, output_time1, output_img2, output_time2], ) return demo if __name__ == "__main__": demo = build_demo() demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, share=True)